
函数域的K2群的挠元
On the Torsion in K2 of a Function Field
函数域 / 分圆元素 / Milnor K2群 {{custom_keyword}} /
function field / cyclotomic element / Milnor K2-group {{custom_keyword}} /
[1] Milnor J., Introduction to Algebraic K-Theory, In: Ann. of Math. Studies 72. New Jersey: Princeton Uni. Press, 1971.
[2] Tate J., Relations between K2 and galois cohomology, Invent. Math., 1976, 36: 257--274.
[3] Suslin A. A., Torsions in K2 of fields, K-Theory, 1987, 1(1): 5--29.
[4] Browkin J., Elements of Small Order in K2(F), In: Algebraic K-theory, Lecture Notes in Math., Vol. 966. Berlin, Heidelberg, New York: Springer-Verlag, 1982, 1--6.
[5] Qin H. R., The Subgroups of Finite Order in K2(Q),$ In: Bass H., Kuku A. O, Pedrini C., eds, Algebraic K-theory and its application, Singapore: World Scientific, 1999, 600--607.
[6] Xu K. J., Qin H. R., A conjecture on a class of elements of finite order in K2(Fwp), Science in China Ser. A, 2001, 44(4): 484--490.
[7] Xu K. J., Qin H. R., Some diophantine equations over Z
[i] and Z
[√-2] with applications to K2 of a field, Communication in Algebra, 2002, 30(1): 353--367.
[8] Cheng X. Y., Xia J. G., Qin H. R., Some elements of finite order in K2(Q), Acta Mathematica Sinica, English Series, 2007, 23(5): 819--826.
[9] Xu K. J., On the elements of prime power order in K2 of a number field, Acta Arithmetica, 2007, 127(2): 199--203.
[10] Xu K. J., Liu M., On the torsion in K2 of a field, Science in China Series A, Mathematics, 2008, 51(7): 1187--1195.
[11] Faltings G., Endlinchkeitsatze für abelsche varietaten über zahlkorpern, Invent. Math., 1983, 73: 349--366.
[12] Grauert H., Mordell vermtung über rationale punkte auf algebraischen kurven und funktionenkörper, Publ Math., I. H. E. S., 1965.
[13] Manin J. I., Rational points of algebraic curves over function fields, Izv Akad. Nauk. SSSR, Ser. Mat., 1963, 27: 1395--1440.
[14] Li K. Z., A Geometric Proof of Mordell Conjecture for Function Field, http://arxiv.org/abs/math.AG/0701407 (2007).
[15] Rosen M., Number Theory in Function Fields, Berlin, Heidelberg, New York: Springer-Verlag, 2002.
国家自然科学基金资助项目(10871106)
/
〈 |
|
〉 |