加权Lorentz空间上的连续模和Gagliardo--Nirenberg型不等式

李宏亮, 徐罕

数学学报 ›› 2010, Vol. 53 ›› Issue (6) : 1225-1238.

PDF(468 KB)
PDF(468 KB)
数学学报 ›› 2010, Vol. 53 ›› Issue (6) : 1225-1238. DOI: 10.12386/A2010sxxb0137
论文

加权Lorentz空间上的连续模和Gagliardo--Nirenberg型不等式

    李宏亮1,2, 徐罕3
作者信息 +

A Note on Inequalities of Gagliardo–Nirenberg Type and the Moduli of Continuity

    Hong Liang LI1,2, Han XU3
Author information +
文章历史 +

摘要

证明了在加权Lorentz空间上联系偏导数和偏连续模的Gagliardo--Nirenberg型乘积型不等式. 我们的主要结果是下面的不等式,其中,且指标pi,si 和权w满足一些特殊条件. 同时给出了CK具体估计.  

Abstract

We prove multiplicative inequalities of Gagliardo-Nirenberg type that connect partial moduli of continuity and partial derivatives of functions with respect to a fixed variable in different weighted Lorentz norms. Our main results are the estimates and , where , with exponents pi, si and weight w satisfying some special conditions. Furthermore, we give concrete estimates of C and K.  

关键词

Lorentz空间 / 连续模 /

Key words

Lorentz spaces / moduli of continuity / weight

引用本文

导出引用
李宏亮, 徐罕. 加权Lorentz空间上的连续模和Gagliardo--Nirenberg型不等式. 数学学报, 2010, 53(6): 1225-1238 https://doi.org/10.12386/A2010sxxb0137
Hong Liang LI, Han XU. A Note on Inequalities of Gagliardo–Nirenberg Type and the Moduli of Continuity. Acta Mathematica Sinica, Chinese Series, 2010, 53(6): 1225-1238 https://doi.org/10.12386/A2010sxxb0137

参考文献



[1] Besov O. V., Il'in V. P., Nikol'skiï S. M., Integral Representaion of Functions and Imbedding Theorems, Vol. 1-2, New Tork, Toronto, London: Winston, Washington D. C., Halsted, 1978.



[2] Ul'yanov P. L., Imbedding theorems and relations between best approximations (moduli of continuity) in various metrics, Mat. Sb., 1970, 81(1): 104--131; English Transl., Math. USSR., 1970, 10(1): 103--126.



[3] Kolyada V. I., On relations between moduli of continuity in different metrics, Trudy Mat. Inst. Steklov., 1988, 181: 117--136. English Transl., Proc. Steklov Inst. Math., 1989, 4: 127--148.



[4] Chen J. C., Li H. L., A kind of estimate of difference norms in anisotropic weighted Sobolev-Lorentz spaces, J. Inequal. Appl., 2009 Art. ID 161405, 22.



[5] Kolyada V. I., On embedding of Sobolev spaces, Mat. Zametki, 1993, 54(3): 48--71; English Transl., Math. Notes, 1993, 54(3): 908--922.



[6] Pelczyñski A., Wojciechowski M., Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm, Studia Math., 1993, 107(1): 61--100.



[7] Kolyada V. I., Inequalities of Gagliardo-Nirenberg type and estimates for the moduli of continuity, Uspekhi Mat. Nauk, 2005, 60(6): 139--156; English Transl., Russian Math. Surveys, 2005, 60(6): 1147--1164.



[8] Bennett C., Sharpley R., Interpolation of Operators, Boston: Academic Press, 1988.



[9] Carro M. J., Raposo J. A., Soria J., Recent Developements in the Theory of Lorentz Spaces and Weighted Inequalities, Mem. Amer. Math. Soc., 2007, 187: 877. \parindent=6mm



[10] Soria J., Lorentz spaces of weak-type, Quart. J. Math. Oxford Ser., 1998, 49(193): 93--103.



[11] Carro M., García del Amo A., Soria J., Weak type weights and normable Lorentz spaces, Proc. Amer. Math. Soc., 1996, 124: 849--857.



[12] Ariño M. A., Muckenhoupt B., Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc., 1990, 320: 727--735.



[13] Sawyer E., Boundedness of classical operators on classical Lorentz spaces, Studia Math., 1990, 96: 145--158.



[14] Petrushev P. P., Popov V. A., Rational Approximation of Real Functions, (Encyclopedia Math. Appl., vol. 28), Cambridge: Cambridge Univ. Press, 1987.



[15] Bourgain J., Brezis H., Mironescu P., Another look at Sobolev spaces, Optimal Control and Partial Differential Equations. In honour of Professor Alain Bensoussan's 60th Birthday (J. L. Menaldi, E. Rofman, and A. Sulem, eds.), IOS Press/Ohmsha, Amsterdam/Tokyo 2001, 439--455.



[16] Bourgain J., Brezis H., Mironescu P., Limiting embeddings for Ws,p when s↑1 and applications, J. Anal. Math., 2002, 87: 77--101.



[17] Maz'ya V., Shaposhnikova T., On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 2002, 195(2): 230--238.



[18] Maz'ya V., Shaposhnikova T., On the Bourgain, Brezis, and Mironescu theorem concerning a Gagliardo-Nirenberg inequality of fractional Sobolev spaces, J. Math. Pures Appl., 2002, 81(9): 877--884.

基金

国家自然科学基金资助项目(10931001,10871173)

PDF(468 KB)

446

Accesses

0

Citation

Detail

段落导航
相关文章

/