
多复变全纯函数族正规准则
Normal Families of Holomorphic Mappings of Several Complex Variables Into P1?
在单复变中, 可以由Zalcman--Pang引理证明与微分多项式有关的正规准则.本文通过推广单复变的Zalcman--Pang引理至多复变 函数情形,证明了一类与多复变全纯函数偏导数取值情况相关的多复变正规准则
The famous Zalcman–Pang lemma deduces many normality criteria for family of holomorphic functions related with differential polynomials of one complex variable. In this paper, we extend the Zalcman–Pang lemma to the case of high dimension and obtain the normality criteria for family of holomorphic functions of several complex variables related with partial derevatives
正规族 / 多复变全纯函数 / Bloch原理 {{custom_keyword}} /
normal family / holomorphic mappings of several complex variables / Bloch principle {{custom_keyword}} /
[1] Bergweiler W., Eremenko W., On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoam, 1995, 11(2): 335--373.
[2] Chen H. H., Fang M. L., On Value Distribution of fnf', Sci. China Ser. A, 1995, 38: 789--798.
[3] Hayman W. K., Research Problems in Function Theory, London: Athlone Press, 1967.
[4] Erwin M., Uberein Problem Von Hayman, Mathematisch Zeitschrift, 1979, 8(1): 239--259.
[5] Pang X. C., Bloch's principle and normal criterion, Sci. China Ser. A, 1989, 32: 782--791.
[6] Pang X. C., On normal criteria of meromorphic functions, Sci. China Ser. A, 1990, 33: 521--527.
[7] Aladro G., Krantz S. G., A criteria for normality in Cn, J. Math. Anal. Appl., 1991, 161: 1--8.
[8] Bargmann D., Bonk M., Hinkkanen A., Martin G. J., Functions avoiding continuous functions, J. d'Anal. Math., 1999, 79: 379--387.
/
〈 |
|
〉 |