PLnPLp空间中MHD方程组强解的存在唯一性及衰减性质

罗显康, 杨晗

数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 31-40.

PDF(448 KB)
PDF(448 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 31-40. DOI: 10.12386/A2011sxxb0005
论文

PLnPLp空间中MHD方程组强解的存在唯一性及衰减性质

    罗显康1, 杨晗2
作者信息 +

Existence, Uniqueness and Decay Properties for Strong Solutions of the MHD Equations in Space PLnPLp

    Xian Kang LUO1, Han YANG2
Author information +
文章历史 +

摘要

本文运用半群理论和Kato [1]的方法, 研究了MHD方程组在PLnPLp,(1<p<n,n≥2)空间中强解的存在唯一性,并对所给定的初始条件得到了强解的时间衰减性质.

 

Abstract

In this paper, the existence, uniqueness and decay properties for the strong solutions of the MHD equations in spacePLnPLp, (1<p<n,n≥2) are studied by applying the semi-group theory and the method used by Kato[1].

 

关键词

MHD方程组 / 强解 / 存在唯一性 / 衰减性质

Key words

MHD equations / strong solutions / existence and uniqueness / decay properties

引用本文

导出引用
罗显康, 杨晗. PLnPLp空间中MHD方程组强解的存在唯一性及衰减性质. 数学学报, 2011, 54(1): 31-40 https://doi.org/10.12386/A2011sxxb0005
Xian Kang LUO, Han YANG. Existence, Uniqueness and Decay Properties for Strong Solutions of the MHD Equations in Space PLnPLp. Acta Mathematica Sinica, Chinese Series, 2011, 54(1): 31-40 https://doi.org/10.12386/A2011sxxb0005

参考文献


[1] Kato T., Strong Lp-solutions of the Navier--Stokes equation in Rm, with applications to weak solutions, Math. Z., 1984, 187: 471--480.

[2] Duvaut G., Lions J. L., Inéquations en thermoélasticité et Magnéto-hydrodynamic, Arch. Ration Mech. Anal., 1972, 46: 241--279.

[3] Sermange M., Temam R., Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 1983, 36: 635--664.

[4] Kozono H., Weak and classical solutions of the two-dimensional Magneto-hydrodynamic equations, Tohoku Math. J., 1989, 41: 471--488.

[5] Caflisch R. E., Klapper I., Steele G., Remarks on singularities, dimension and energy dissipation for ideal hydrodynamic and MHD, Comm. Math. Phys., 1997, 184: 443--455.

[6] Beale J. T., Kato T., Majda A., Remarks on breakdown of smooth solutions for the 3D Euler equations, Comm. Math. Phys., 1984, 94: 61--66.

[7] Wu J., Regularity results for weak solutions of the 3D MHD equations, Discrete Contin. Dyn. Syst., 2004, 10: 543--556.

[8] Zhou Y., Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 2005, 12: 881--886.

[9] Zhou Y., Regularity criteria for the 3D MHD equations in terms of the pressure, Nonlinear Mech., 2006, 41: 1174--1180.

[10] He C., Xin Z., On the regularity of weak solutions to the Magneto-hydrodynamic equations, J. Differential Equations, 2005, 213: 235--254.

[11] Giga Y., Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier--Stokes system, J. Differential Equations, 1986, 61: 186--212.

[12] Schonbek M. E., Schonbek T. P., Süli E., Large-time behavior of solution to the Magneto-hydrodynamic equations, Math. Ann., 304: 717--756.

[13] Chen Q. L., Miao C. X., Blow-up criterion of smooth solutions to the two-fluid MHD equations, arXiv: Math.AP/0611165v2, 10 Nov., 2006.

[14] Li D. Q., Chen Y. M., Nonlinear Evolution Equations, Beijing: Science Press, 1997 (in Chinese).

[15] Shang X. M., Existence, Uniqueness and Decay Properties for Solutions of the MHD Equations, Master Degree Dissertation, Beijing: Beijing Capital Normal University, 2005 (in Chinese).

基金

国家自然科学基金(10301026,10225102)

PDF(448 KB)

397

Accesses

0

Citation

Detail

段落导航
相关文章

/