上三角算子矩阵的谱
Spectra of Upper-Triangular Operator Matrices
Banach空间 / 上三角算子矩阵 / 谱 {{custom_keyword}} /
Banach spaces / upper-triangular operator matrices / spectra {{custom_keyword}} /
[1] Djordjevi'c D. S., Perturbations of spectra of operator matrices, J. Operator Theory, 2002, 48: 467--486.
[2] Zhang S. F., Zhong H. J., Jiang Q. F., Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl., 2008, 429: 2067--2075.
[3] Barraa M., Boumazgour M., On the perturbations of spectra of upper triangular operator matrices, J. Math. Anal. Appl., 2008, 347: 315--322.
[4] Zerouali E. H., Zguitti H., Perturbation of spectra of operator matrices and local spectral theory, J. Math. Anal. Appl., 2006, 324: 992--1005.
[5] Djordjevi'c S. V., Zguitti H., Essential point spectra of operator matrices through local spectral theory, J. Math. Anal. Appl., 2008, 338: 285--291.
[6] Han J. K., Lee H. Y., Lee W. Y., Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc., 1999, 128: 119--123.
[7] Lee W. Y., Weyl spectra of operator matrices, Proc. Amer. Math. Soc., 2000, 129: 131--138.
[8] Zhang Y. N., Zhong H. J., Lin L. Q., Browder spectra and essential spectra of operator matrices, Acta Math. Sinica, 2008, 24: 947--954.
[9] Hwang I. S., Lee W. Y., The boundedness below of 2×2 upper triangular operator matrices, Integr. Equ. Oper. Theory, 2001, 39: 267--276.
[10] Cao X. H., Guo M. Z., Meng B., Semi-Fredholm spectrum and Weyl's theory for operator matrices, Acta Mathematica Sinica, English Series, 2006, 22(2): 169--178.
[11] Cao X. H., Guo M. Z., Meng B., Weyl's theorem for upper triangular operator matrices, Linear Algebra Appl., 2005, 402: 61--73.
[12] Chen X. L., Zhang S. F., Zhong H. J., On the filling in holes problem of operator matrices, Linear Algebra Appl., 2009, 430: 558--563.
[13] Duggal B. P., Upper triangular operator matrices, SVEP and Browder, Weyl Theorems, Integr. Equ. Oper. Theory, 2009, 63: 17--28.
[14] Barraa M., Boumazgour M., A note on the spectrum of an upper triangular operator matrix, Proc. Amer. Math. Soc., 2003, 131: 3083--3088.
[15] Benhida C., Zerouali E. H., Zguitti H., Spectral properties of upper-triangular block operators, Acta Sci. Math.(Szeged), 2005, 71: 607--616.
[16] Cao X. H., Browder spectra for upper triangular operator matrices,J. Math. Anal. Appl., 2008, 342: 477--484.
[17] Cao X. H., Guo M. Z., Meng B., Drazin spectrum and Wely's theorem for operator matrices, J. Math. Res. Exposition, 2006, 26: 413--422.
[18] Djordjevi'c S. V., Han Y. M., A note on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc., 2003, 131: 2543--2547.
[19] Djordjevi'c S. V., Han Y. M., Spectral continuity for operator matrices, Glasg. Math. J., 2001, 43: 487--490.
[20] Du H. K., Pan J., Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc., 1994, 121: 761--766.
[21] Elbjaoui H., Zerouali E. H., Local spectral theory for 2×2 operator matrices, Int. J. Math. Math. Sci., 2003, 42: 2667--2672.
[22] Lee W. Y., Weyl's theorem for operator matrices, Integr. Equ. Oper. Theory, 1998, 32: 319--331.
[23] Li Y., Sun X. H., Du H. K., A note on the left essential spectra of operator matrices, Acta Mathematica Sinica, English Series, 2007, 23(12): 2235--2240.
[24] Li Y., Sun X. H., Du H. K., The intersection of left (right) spectra of 2 × 2 upper triangular operator matrices, Linear Algebra Appl., 2006, 418: 112--121.
[25] Li Y., Du H. K, The intersection of essential approximate point spectra of operator matrices, J. Math. Anal. Appl., 2006, 323: 1171--1183.
[26] Zhang H. Y., Du H. K., Browder spectra of upper-triangular operator matrices, J. Math. Anal. Appl., 2006, 323: 700--707.
[27] Zhang S. F., Zhong H. J., A note of Browder spectrum of operator matrices, J. Math. Anal. Appl., 2008, \bf 344: 927--931.
[28] Li Y., Sun X. H., Du H. K., The intersection of left (right) weyl spectrum of 2×2 upper triangular operator matrices, Acta Mathematica Sinica, Chinese Series, 2005, 48(4): 653--660.
[29] Zhang S. F., Wu Z. Y., Zhong H. J., Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra Appl., 2010, 433: 653--661.
[30] Aiena P., Fredholm and Local Spectral Theory, with Applications to Multipliers, London: Kluwer Academic Publishers, 2004.
[31] Berkani M., Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 2002, 130: 1717--1723.
[32] Berkani M., On a class of quasi-Fredholm operators, Integr. Equ. Oper. Theory, 1999, 34: 244--249.
[33] Mbekhta M., Müller V., On the axiomatic theory of spectrum II., Studia Math., 1996, 119: 129--147.
[34] Schmoeger C., Perturbation properties of some classes of operators, Rendiconti di Matematica, 1994, 14: 533--541.
[35] Burgos M., Kaidi A., Mbekhta M., Oudghiri M., The descent spectrum and perturbations, J. Operator Theory, 2006, 56: 259--271.
国家自然科学基金(10771034, 10771191,10471124);福建省自然科学基金(Z0511019, S0650009)
/
〈 | 〉 |