上三角算子矩阵的谱

张世芳, 钟怀杰, 武俊德

数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 41-60.

PDF(541 KB)
PDF(541 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 41-60. DOI: 10.12386/A2011sxxb0006
论文

上三角算子矩阵的谱

    张世芳1,2, 钟怀杰2, 武俊德1
作者信息 +

Spectra of Upper-Triangular Operator Matrices

    Shi Fang ZHANG1,2, Huai Jie ZHONG2, Jun De WU1
Author information +
文章历史 +

摘要

X,Y是Banach空间, 对AB(X),BB(Y), CB(Y,X),以MCXY上的算子 (A0 C B). 本文给出了算子MC的20种谱的结构表示, 18种谱的填洞性质以及关于这些问题的有趣例子.

 

Abstract

Let X and Y be Banach spaces, AB(X),BB(Y), CB(Y,X), MC=(A0 C B) be the operator matrix acting on the Banach space XY. In this paper, we give out 20 kind spectra structure of MC, decide 18 kind spectra filling-in-hole properties of MC and present some interesting examples of these problems.

 

关键词

Banach空间 / 上三角算子矩阵 /

Key words

Banach spaces / upper-triangular operator matrices / spectra

引用本文

导出引用
张世芳, 钟怀杰, 武俊德. 上三角算子矩阵的谱. 数学学报, 2011, 54(1): 41-60 https://doi.org/10.12386/A2011sxxb0006
Shi Fang ZHANG, Huai Jie ZHONG, Jun De WU. Spectra of Upper-Triangular Operator Matrices. Acta Mathematica Sinica, Chinese Series, 2011, 54(1): 41-60 https://doi.org/10.12386/A2011sxxb0006

参考文献


[1] Djordjevi'c D. S., Perturbations of spectra of operator matrices, J. Operator Theory, 2002, 48: 467--486.

[2] Zhang S. F., Zhong H. J., Jiang Q. F., Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl., 2008, 429: 2067--2075.

[3] Barraa M., Boumazgour M., On the perturbations of spectra of upper triangular operator matrices, J. Math. Anal. Appl., 2008, 347: 315--322.

[4] Zerouali E. H., Zguitti H., Perturbation of spectra of operator matrices and local spectral theory, J. Math. Anal. Appl., 2006, 324: 992--1005.

[5] Djordjevi'c S. V., Zguitti H., Essential point spectra of operator matrices through local spectral theory, J. Math. Anal. Appl., 2008, 338: 285--291.

[6] Han J. K., Lee H. Y., Lee W. Y., Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc., 1999, 128: 119--123.

[7] Lee W. Y., Weyl spectra of operator matrices, Proc. Amer. Math. Soc., 2000, 129: 131--138.

[8] Zhang Y. N., Zhong H. J., Lin L. Q., Browder spectra and essential spectra of operator matrices, Acta Math. Sinica, 2008, 24: 947--954.

[9] Hwang I. S., Lee W. Y., The boundedness below of 2×2 upper triangular operator matrices, Integr. Equ. Oper. Theory, 2001, 39: 267--276.

[10] Cao X. H., Guo M. Z., Meng B., Semi-Fredholm spectrum and Weyl's theory for operator matrices, Acta Mathematica Sinica, English Series, 2006, 22(2): 169--178.

[11] Cao X. H., Guo M. Z., Meng B., Weyl's theorem for upper triangular operator matrices, Linear Algebra Appl., 2005, 402: 61--73.

[12] Chen X. L., Zhang S. F., Zhong H. J., On the filling in holes problem of operator matrices, Linear Algebra Appl., 2009, 430: 558--563.

[13] Duggal B. P., Upper triangular operator matrices, SVEP and Browder, Weyl Theorems, Integr. Equ. Oper. Theory, 2009, 63: 17--28.

[14] Barraa M., Boumazgour M., A note on the spectrum of an upper triangular operator matrix, Proc. Amer. Math. Soc., 2003, 131: 3083--3088.

[15] Benhida C., Zerouali E. H., Zguitti H., Spectral properties of upper-triangular block operators, Acta Sci. Math.(Szeged), 2005, 71: 607--616.

[16] Cao X. H., Browder spectra for upper triangular operator matrices,J. Math. Anal. Appl., 2008, 342: 477--484.

[17] Cao X. H., Guo M. Z., Meng B., Drazin spectrum and Wely's theorem for operator matrices, J. Math. Res. Exposition, 2006, 26: 413--422.

[18] Djordjevi'c S. V., Han Y. M., A note on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc., 2003, 131: 2543--2547.

[19] Djordjevi'c S. V., Han Y. M., Spectral continuity for operator matrices, Glasg. Math. J., 2001, 43: 487--490.

[20] Du H. K., Pan J., Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc., 1994, 121: 761--766.

[21] Elbjaoui H., Zerouali E. H., Local spectral theory for 2×2 operator matrices, Int. J. Math. Math. Sci., 2003, 42: 2667--2672.

[22] Lee W. Y., Weyl's theorem for operator matrices, Integr. Equ. Oper. Theory, 1998, 32: 319--331.

[23] Li Y., Sun X. H., Du H. K., A note on the left essential spectra of operator matrices, Acta Mathematica Sinica, English Series, 2007, 23(12): 2235--2240.

[24] Li Y., Sun X. H., Du H. K., The intersection of left (right) spectra of 2 × 2 upper triangular operator matrices, Linear Algebra Appl., 2006, 418: 112--121.

[25] Li Y., Du H. K, The intersection of essential approximate point spectra of operator matrices, J. Math. Anal. Appl., 2006, 323: 1171--1183.

[26] Zhang H. Y., Du H. K., Browder spectra of upper-triangular operator matrices, J. Math. Anal. Appl., 2006, 323: 700--707.

[27] Zhang S. F., Zhong H. J., A note of Browder spectrum of operator matrices, J. Math. Anal. Appl., 2008, \bf 344: 927--931.

[28] Li Y., Sun X. H., Du H. K., The intersection of left (right) weyl spectrum of 2×2 upper triangular operator matrices, Acta Mathematica Sinica, Chinese Series, 2005, 48(4): 653--660.

[29] Zhang S. F., Wu Z. Y., Zhong H. J., Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra Appl., 2010, 433: 653--661.

[30] Aiena P., Fredholm and Local Spectral Theory, with Applications to Multipliers, London: Kluwer Academic Publishers, 2004.

[31] Berkani M., Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 2002, 130: 1717--1723.

[32] Berkani M., On a class of quasi-Fredholm operators, Integr. Equ. Oper. Theory, 1999, 34: 244--249.

[33] Mbekhta M., Müller V., On the axiomatic theory of spectrum II., Studia Math., 1996, 119: 129--147.

[34] Schmoeger C., Perturbation properties of some classes of operators, Rendiconti di Matematica, 1994, 14: 533--541.

[35] Burgos M., Kaidi A., Mbekhta M., Oudghiri M., The descent spectrum and perturbations, J. Operator Theory, 2006, 56: 259--271.

基金

国家自然科学基金(10771034, 10771191,10471124);福建省自然科学基金(Z0511019, S0650009)

PDF(541 KB)

Accesses

Citation

Detail

段落导航
相关文章

/