球面Sd-1上的广义Ul'yanov型不等式

王晟

数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 115-124.

PDF(454 KB)
PDF(454 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 115-124. DOI: 10.12386/A2011sxxb0013
论文

球面Sd-1上的广义Ul'yanov型不等式

    王晟1,2
作者信息 +

Generalized Ul'yanov Type Inequality on the Sphere Sd-1

    Sheng WANG1,2
Author information +
文章历史 +

摘要

本文对于单位球面上的经典连续模,给出了一个非常有用的广义Ul'yanov型不等式.该不等式在球面多项式逼近、球面嵌入理论以及球面上函数空间的插值理论等领域有着非常重要的应用.我们的证明基于球面调和多项式展开的新的估计,这些估计本身也具有独立的意义.

 

Abstract

We prove a generalized Ul'yanov type inequality for the classical moduli of smoothness on the unit sphere, which has important applications in imbedding theory, spherical polynomial approximation and the theory of interpolation in function spaces on the sphere. Our proof is based on several new estimates on spherical harmonic expansions, which seem to be of independent interest.

 

关键词

球调和 / 分数阶导数 / 连续模 / 广义Ul’yanov型不等式

Key words

moduli of smoothness / generalized Ul’yanov-type inequalities / spherical harmonics / fractional derivatives

引用本文

导出引用
王晟. 球面Sd-1上的广义Ul'yanov型不等式. 数学学报, 2011, 54(1): 115-124 https://doi.org/10.12386/A2011sxxb0013
Sheng WANG. Generalized Ul'yanov Type Inequality on the Sphere Sd-1. Acta Mathematica Sinica, Chinese Series, 2011, 54(1): 115-124 https://doi.org/10.12386/A2011sxxb0013

参考文献


[1] Ul'yanov P. L., The imbedding of certain function classes HpΩ, Izv. Akad. Nauk SSSR Ser. Mat., 1968, 3: 649--686; English transl. in Math. USSR-Izv., 1968, 2.

[2] DeVore R., Riemmenschneider S., Sharpley R., Weak interpolation in Banach spaces, J. Funct. Anal., 1979, 33: 58--94.

[3] Gol'dman M. L., Imbedding of constructive and structural Lipschitz spaces in symmetric spaces, Trudy Mat. Inst. Steklov., 1986, 173: 90--112 (Russian), translated in Proc. Steklov Inst. Math., 1987, 173(4): 93--118.

[4] Ditzian Z., Tikhonov S., Ul'yanov and Nikol'skii-type inepualities, J. Approx. Theory, 2005, 133(1): 100--133.

[5] Ditzian Z., Tikhonov S., Moduli of smoothness of functions and their derivatives, Studia Math., 2007, 180(2): 143--160.

[6] Simonov B., Tikhonov S., Weak Inequalities for Moduli of Smoothness, K-Functionals and Embedding Theorems, preprint.

[7] Wang K. Y., Li L. Q., Harmonic Analysis and Approximation on the unit Sphere, Beijing: Science Press, 2000.

[8] Belinsky E., Dai F., Ditzian Z., Multivariate approximating averages, J. Approx. Theory, 2003, 125(1): 85--105.

[9] Zygmund A., Trigonometric Series, Vol.I, II. Third Edition, Cambridge: Cambridge University Press, 2002.

[10] Ivanov V. A., Lizorkin P. I., Estimates, in integral forms, of derivatives of harmonic polynomials and spherical polynomials, Soviet Math. Dokl., 1986, 33(1): 13--16.

[11] Askey R., Wainger S., On the behavior of special classes of ultraspherical expansions, I, J. Analyse Math., 1965, 15: 193--220.

[12] Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton: Princeton University Press, 1970.

[13] Ditzian Z., Hristov V. H., Ivanov K. G., Moduli of smoothness and K-functionals in Lp, 0<p<1, Constructive Approximation, 1995, 11(1): 67--83.

基金

国家自然科学基金资助项目(10771016)

PDF(454 KB)

298

Accesses

0

Citation

Detail

段落导航
相关文章

/