共形空间中具有平行的共形第二基本形式的I型类时超曲面的分类

聂昌雄, 田大平, 吴传喜

数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 125-136.

PDF(534 KB)
PDF(534 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 125-136. DOI: 10.12386/A2011sxxb0014
论文

共形空间中具有平行的共形第二基本形式的I型类时超曲面的分类

    聂昌雄1,2, 田大平1, 吴传喜3
作者信息 +

Classification of Type I Time-Like Hyperspaces with Parallel Conformal Second Fundamental Forms in the Conformal Space

    Chang Xiong NIE1,2, Da Ping TIAN1, Chuan Xi WU3
Author information +
文章历史 +

摘要

共形空间中具有平行的共形第二 基本形式的类空超曲面已经作了完全分类, 本文将继续类时情形的探讨并对此时的I型 类时超曲面分类.

 

Abstract

We have classified completely the space-like hypersurfaces with parallel conformal second fundamental forms in the conformal space. In this work, we study the time-like case and classify the Type I time-like hypersurfaces with parallel conformal second fundamental forms.

 

关键词

共形空间 / 共形不变量 / 共形第二基本形式 / I型类时超曲面

Key words

the conformal space / the conformal invariants / the conformal second fundamental form / type I time-like hypersurfaces

引用本文

导出引用
聂昌雄, 田大平, 吴传喜. 共形空间中具有平行的共形第二基本形式的I型类时超曲面的分类. 数学学报, 2011, 54(1): 125-136 https://doi.org/10.12386/A2011sxxb0014
Chang Xiong NIE, Da Ping TIAN, Chuan Xi WU. Classification of Type I Time-Like Hyperspaces with Parallel Conformal Second Fundamental Forms in the Conformal Space. Acta Mathematica Sinica, Chinese Series, 2011, 54(1): 125-136 https://doi.org/10.12386/A2011sxxb0014

参考文献


[1] Li H., Liu H., Wang C. P., Zhao G. S., Möbius isoparametric Hypersurfaces in Sn+1 with two distinct principal curvatures, Acta Mathematica Sinica, English Series, 2002, 18(3): 437--446.

[2] Hu Z., Li H., Classification of Hypersurfaces with parallel möbius second fundamental form in Sn+1, Sci. China Ser. A, 2004, 47: 417--430.

[3] Hu Z., Li D., Möbius isoparametric Hypersurfaces with three distinct principal curvatures, Pacific J. Math., 2007, 232(2): 289--311.

[4] Hu Z., Li H., Wang C. P., Classification of möbius isoparametric Hypersurfaces in S5, Monatsh. Math., 2007, 151(3): 201--222.

[5] Hu Z., Zhai S., Classification of möbius isoparametric Hypersurfaces in the unit six-sphere, Tohoku Math. J., 2008, 60: 499--526.

[6] Nie C. X., Wu C. X., Space-like Hypersurfaces with parallel conformal second fundamental forms in the conformal space, Acta Mathematica Sinica, Chinese Series, 2008, 51(4): 685--692.

[7] Nie C. X., Li T. Z., He Y. J., Wu C. X., Conformal isoparametric Hypersurfaces with two distinct conformal principal curvatures in conformal space, Sci. China Ser. A, 2010, 53(4): 953--965.

[8] Wang C. P., Moebius geometry of submanifolds in Sn, Manuscripta Math., 1998, 96: 517--535.

[9] Liu H. L., Wang C. P., Zhao G. S., Möbius isotropic submanifolds in Sn, Tohoku Math. J., 2001, 53: 553--569.

[10] Guo Z., The conformal gauss maps of willmore submanifolds, Acta Mathematica Sinica, Chinese Series, 2003, 46(1): 183--188.

[11] Li H., Wang C. P., Surfaces with vanishing moebius form in Sn, Acta Mathematica Sinica, English Series, 2003, 19(4): 671--678.

[12] Shu S. C., Liu S. Y., Submanifolds with moebius flat normal bundle in Sn, Acta Mathematica Sinica, Chinese Series, 2005, 48(6): 1221--1232.

[13] Zhang T. F., Zhong D. X., Surfaces with vanishing moebius form in Sn, Acta Mathematica Sinica, Chinese Series, 2004, 47(2): 241--250.

[14] Li X. X., Zhang F. Y., A classification of immersed Hypersurfaces in spheres with parallel blaschke tensors, Tohoku Math. J., 2006, 58 (4): 581--597.

[15] Wang C. P., Canonical equiaffine Hypersurfaces in Rn+1, Math. Z., 1993, 214: 579--592.

基金

国家自然科学基金资助项目(10801006,10971055);应用数学湖北省重点实验室开放课题项目

PDF(534 KB)

215

Accesses

0

Citation

Detail

段落导航
相关文章

/