
共形空间中具有平行的共形第二基本形式的I型类时超曲面的分类
Classification of Type I Time-Like Hyperspaces with Parallel Conformal Second Fundamental Forms in the Conformal Space
共形空间 / 共形不变量 / 共形第二基本形式 / I型类时超曲面 {{custom_keyword}} /
the conformal space / the conformal invariants / the conformal second fundamental form / type I time-like hypersurfaces {{custom_keyword}} /
[1] Li H., Liu H., Wang C. P., Zhao G. S., Möbius isoparametric Hypersurfaces in Sn+1 with two distinct principal curvatures, Acta Mathematica Sinica, English Series, 2002, 18(3): 437--446.
[2] Hu Z., Li H., Classification of Hypersurfaces with parallel möbius second fundamental form in Sn+1, Sci. China Ser. A, 2004, 47: 417--430.
[3] Hu Z., Li D., Möbius isoparametric Hypersurfaces with three distinct principal curvatures, Pacific J. Math., 2007, 232(2): 289--311.
[4] Hu Z., Li H., Wang C. P., Classification of möbius isoparametric Hypersurfaces in S5, Monatsh. Math., 2007, 151(3): 201--222.
[5] Hu Z., Zhai S., Classification of möbius isoparametric Hypersurfaces in the unit six-sphere, Tohoku Math. J., 2008, 60: 499--526.
[6] Nie C. X., Wu C. X., Space-like Hypersurfaces with parallel conformal second fundamental forms in the conformal space, Acta Mathematica Sinica, Chinese Series, 2008, 51(4): 685--692.
[7] Nie C. X., Li T. Z., He Y. J., Wu C. X., Conformal isoparametric Hypersurfaces with two distinct conformal principal curvatures in conformal space, Sci. China Ser. A, 2010, 53(4): 953--965.
[8] Wang C. P., Moebius geometry of submanifolds in Sn, Manuscripta Math., 1998, 96: 517--535.
[9] Liu H. L., Wang C. P., Zhao G. S., Möbius isotropic submanifolds in Sn, Tohoku Math. J., 2001, 53: 553--569.
[10] Guo Z., The conformal gauss maps of willmore submanifolds, Acta Mathematica Sinica, Chinese Series, 2003, 46(1): 183--188.
[11] Li H., Wang C. P., Surfaces with vanishing moebius form in Sn, Acta Mathematica Sinica, English Series, 2003, 19(4): 671--678.
[12] Shu S. C., Liu S. Y., Submanifolds with moebius flat normal bundle in Sn, Acta Mathematica Sinica, Chinese Series, 2005, 48(6): 1221--1232.
[13] Zhang T. F., Zhong D. X., Surfaces with vanishing moebius form in Sn, Acta Mathematica Sinica, Chinese Series, 2004, 47(2): 241--250.
[14] Li X. X., Zhang F. Y., A classification of immersed Hypersurfaces in spheres with parallel blaschke tensors, Tohoku Math. J., 2006, 58 (4): 581--597.
[15] Wang C. P., Canonical equiaffine Hypersurfaces in Rn+1, Math. Z., 1993, 214: 579--592.
国家自然科学基金资助项目(10801006,10971055);应用数学湖北省重点实验室开放课题项目
/
〈 |
|
〉 |