函数系矩阵生成的分形完备簇的豪斯夺夫维数和盒维数

龙伦海, 黄玲, 毕红兵

数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 137-146.

PDF(517 KB)
PDF(517 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (1) : 137-146. DOI: 10.12386/A2011sxxb0015
论文

函数系矩阵生成的分形完备簇的豪斯夺夫维数和盒维数

    龙伦海, 黄玲, 毕红兵
作者信息 +

The Hausdorff Dimension and Box Dimension of the Complete Family of Fractals Derived by the Function System Matrix

    Lun Hai LONG, Ling HUANG, Hong Bing BI
Author information +
文章历史 +

摘要

本文给出了函数系矩阵的定义及运算, 用函数系矩阵构造了分形完备簇,并确定了相似分形完备簇在开集条件下的 Hausdorff 维数和 Box 维数.

 

Abstract

In this paper we introduce the concept and operations of the function system matrix, contruct the complete family of fractals by the function system matrix, and we determine the Hausdorff dimension and the Box-dimension of the complete family of similar fractals under the open set conditions.

 

关键词

函数系矩阵 / 分形完备簇 / Hausdorff 维数及Box-维数

Key words

function system matrix / complete family of fractals / Hausdorff dimension and Box-dimension

引用本文

导出引用
龙伦海, 黄玲, 毕红兵. 函数系矩阵生成的分形完备簇的豪斯夺夫维数和盒维数. 数学学报, 2011, 54(1): 137-146 https://doi.org/10.12386/A2011sxxb0015
Lun Hai LONG, Ling HUANG, Hong Bing BI. The Hausdorff Dimension and Box Dimension of the Complete Family of Fractals Derived by the Function System Matrix. Acta Mathematica Sinica, Chinese Series, 2011, 54(1): 137-146 https://doi.org/10.12386/A2011sxxb0015

参考文献


[1] Marion J., Mesures de Hausdorff et théorie de Perron--Frobenius des matrices non-négatives, Ann. Inst. Fourier. Grenoble., 1985, 35(4): 99--125.

[2] Marion J., Mesures de Hausdorff d'un fractal á similitude interne, Ann. Inst. Fourier. Grenoble., 1996, 10(1): 51--84.

[3] Long L. H., The Hausdorff dimension of fractals generated from representing system, Acta Mathematica Sinica, Chinese Series, 2001, 44(4): 627--632.

[4] Falconer K. J., Fractal Geometry--Mathematical Foundations and Applications, New York: John Wiley, 1990.

[5] Wen Z. Y., Mathematical Foundations of Fractal Geometry, Shanghai: Shanghai Educational Publishing House, 2001 (in Chinese).

[6] Liu Q. H., Wen Z. Y., On dimensions of multitype Moran sets, Math. Proc. Camb. Phil. Soc., 2005, 139(541): 541--552.

[7] Xi L. F., Ruan H. J., Lipschitz equivalence of self-Similar sets satisfying strong separation condition, Acta Mathematica Sinica, Chinese Series, 2008, 51(3): 493--500.

[8] Wang J., Chen M., Coarse multifractal analysis for sample paths of Brownian sheet, Acta Mathematica Sinica, Chinese Series, 2009, 52(3): 561--568.

[9] Wu C. J., Liu L. Q., Fractal properties of multi-self-similar hunt processes on Rd+, Acta Mathematica Sinica, Chinese Series, 2009, 52(5): 1013--1020.

基金

海南省教育厅自然科学资助项目

PDF(517 KB)

244

Accesses

0

Citation

Detail

段落导航
相关文章

/