
小波框架的某些判定准则
Some Criterions on Wavelet Frames
框架 / 标准正交基 / 贝塞尔序列 {{custom_keyword}} /
frame / orthonormal basis / Bessel sequence {{custom_keyword}} /
[1] Duffin R. J., Shaffer A. C., A class of nonharmonic Fourier Series, Trans. Amer. Math. Soc., 1952, 72: 341--366.
[2] Sz-Nagy B., Expansion theorems of Paley-Wiener type, Duke Math. J., 1947, 14: 975--978.
[3] RYoung R. M., An Introduction to Nonharmonic Fourier Series, New York: Academic Press, 1980.
[4] Chui C. K., An Introduction to Wavelets, New York: Acad. Press, 1992.
[5] Daubechies I., Ten Lectures on Wavelets, CBMS 61, SIAM, 1992.
[6] Hernández E., Weiss G., A First Course on Wavelets, CRC Press, Boca Raton, FL, 1996.
[7] Mallat S., Multiresolution approximations and wavelet orthonormal basis of L2(R), Trans. Amer. Math. Soc., 1989, 315: 69--87.
[8] Heil C. E., Walnut D. F., Continuous and discrete wavelet transforms, SIAM Review, 1989, 31 (4): 628--666.
[9] Han D., Approximations for gabor and wavelet frames, Trans. Amer. Math. Soc., 2003, 355(8): 3329--3342.
[10] Daubechies I., Han B., Pairs of dual wavelet frames from any two refinable functions, Cons. Approx., 2004, \bf 20: 325--352.
[11] Balan R., Casazza P. G., Heil C., Landau Z., Density, Overcompleteness, and localization of frames, AMS Electronic Research Announcements, 2006, 12: 71--86.
[12] Casazza P. G., Kutyniok G., A generalization of gram schmidt orthogonalization generating all parseval frames, Advances in Computational Mathematics, 2007, 18: 65--78.
[13] Sun W. C., Density of wavelet frames, Applied and Computational Harmonic Analysis, 2007, 22(2): 264--272.
[14] Li D. F., Sun W. C., Expansion of frames to tight frames, Acta Mathematica Sinica, English Series, 2009, \bf 25(2): 287--292.
[15] Christensen O., Frame perturbation, Proc. Amer. Math. Soc., 1995, 123: 1217--1220.
教育部留学归国基金项目SRF([2008]890);江西省自然科学基金资助项目(2008GZS0024);西南财经大学第三期211青年成长项目
/
〈 |
|
〉 |