不可定向曲面上的最大亏格嵌入和最小亏格嵌入
Maximum Genus Embeddings and Minimum Genus Embeddings in Non-orientable Surfaces
亏格嵌入 / 完全图 / 电流图 {{custom_keyword}} /
genus embedding / complete graph / current graph {{custom_keyword}} /
[1] Bondy J. A., Murty U. S., Graph theory with applications, London: Macmillan, 1976.
[2] Huang Y. Q., On the Maximum Genus of Graphs, Ph.D.Dissertation, Beijing: Northern Jiaotong University, 1996 (in Chinese).
[3] Ren H., Bai Y., Exponentially many maximum genus embeddings and genus embedings for complete graphs, Science in Chinese, 2008, 38: 595-600.
[4] Lawrencenkno S., Negami S., White A. T., Three nonisomorphic triangulations of an orientable surface with the same complete graph, Discrete Mathmatics, 1994, 135: 367-369.
[5] Bonnington C. P., Grannell M. J., Griggs T. S., Siran J., Face 2-colourable triangular embeddings of complete graphs, J. Combin. Theory Ser. B, 1998, 74: 8-19.
[6] Liu Y. P., Embeddability in Graphs, London: Kluwer, 1995.
[7] Ringel G., Map Color Theorem, Berlin: Springer-Verlag, 1974.
[8] Liu Y. P., Map color theorem and surface embeddings of graphs, Math. Theory Prac., 1981, 1: 65-78.
[9] Ren H., Gao Y. B., Lower bound of the number of maximum genus embeddings and genus embeddings of K12s+7, Graphs and Comninatorics, Preprint.
国家自然科学基金资助(10771225);中央民族大学自主科研项目资助
/
〈 | 〉 |