模范畴Recollement的Koenig定理

林增强, 王敏雄

数学学报 ›› 2011, Vol. 54 ›› Issue (3) : 461-466.

PDF(292 KB)
PDF(292 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (3) : 461-466. DOI: 10.12386/A2011sxxb0047
论文

模范畴Recollement的Koenig定理

    林增强, 王敏雄
作者信息 +

Koenig’s Theorem of Recollement of Module Categories

    Zeng Qiang LIN, Min Xiong WANG
Author information +
文章历史 +

摘要

Koenig定理描述了环的导出范畴允许recollement的一个充分必要条件.本文给出环的模范畴版本的Koenig定理及其应用.应用一是可以导出Morita等价定理,应用二是可以描述三角矩阵环与模范畴的recollement之间的密切联系.  

Abstract

Koenig’s theorem describes a necessary and sufficient criterion for the existence of a recollement of derived categories of rings. This paper gives Koenig’s theorem for the version of a recollement of module categories of rings. As two applications, we give a new proof of Morita’s equivalent theorem and describe the close relation between a triangular matrix ring and a recollement of module categories of rings.  

关键词

模范畴 / recollement / 三角矩阵环

Key words

recollement / module category / triangular matrix ring

引用本文

导出引用
林增强, 王敏雄. 模范畴Recollement的Koenig定理. 数学学报, 2011, 54(3): 461-466 https://doi.org/10.12386/A2011sxxb0047
Zeng Qiang LIN, Min Xiong WANG. Koenig’s Theorem of Recollement of Module Categories. Acta Mathematica Sinica, Chinese Series, 2011, 54(3): 461-466 https://doi.org/10.12386/A2011sxxb0047

参考文献

[1] Grothendieck A., Groups and Classes des Categories Abeliennes et Trianguliers Complexe Parfaits, In: LNM589, New York: Springer-Verlag, 1977: 351-371.



[2] Beilinson A. A., Bernstein J., Deligne P., Faisceaux Pervers, in: Analyse et Topologie sur les Espaces Singuliers,Asterisque, 1982, 100: 1-172.



[3] Parshall B., Scott L., Derived categories, quasi-hereditary algebras and algebraic groups, Carlton UniversityMathematical Notes, 1988, 3: 1-104.



[4] Beligiannis A., Reiten I., Homological and Homotopical Aspects of Torsion Theories, Memoirs of the AmericanMathematical Society, 188, 2007.



[5] Cline E., Parshall B., Scott L., Algebraic stratification in representation in representation categories, J.Algebra, 1988, 117: 504-521.



[6] Cline E., Parshall B., Scott L., Finite dimensional algebras and highest weight categories, J. Reine. Angew.Math., 1988, 391: 85-99.



[7] Franjou V., Pirashvili T., Comparison of abelian categories recollements, Doc. Math., 2004, 9: 41-56.



[8] Chen Q., Tang L., Recollements, idempotent completions and t-structures of triangulated categories, J. Algebra,2008, 319: 3053-3061.



[9] Lin Y. Lin Z., One-point extension and recollement, Science in China, Series A, 2008, 51(3): 376-382.



[10] Lin Y., Lin Z., One-point extensions and recollement of derived categories, Algebra Colloq, 2010, 17(3):507-514.



[11] König S., Tilting complexes, perpendicular categories and recollements of derived module categories of rings,J. Pure and Appl. Algebra, 1991, 73: 211-232.



[12] Jørgensen P., Recollement for differential graded algebras, J. Algebra, 2006, 299: 589-601.



[13] Vincent F., Teimuraz P., Strict polynomial functors and coherent functors, Manuscripta Mathematica, 2008,127(1): 23-53.



[14] Hilton P. J., Stammbach U., A Course in Homological Algebra, 2nd ed, New York: Springer-Verlag, 2003.



[15] Auslander M., Reiten I., Smalø O., Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math.,vol. 36, Cambridge: Cambridge Univ. Press, 1995.

基金

国家自然科学基金资助项目(10671161);华侨大学科研启动基金资助项目(08BS506)

PDF(292 KB)

300

Accesses

0

Citation

Detail

段落导航
相关文章

/