重新确定了广义超特殊
p-群
G的自同构群的结构. 设|
G|=
p2n+m, |
ζG|=
pm, 其中
n ≥ 1,
m ≥ 2, Aut
cG是Aut
G中平凡地作用在
ζG上的元素形成的正规子群, 则
(i) 若
p是奇素数, 则Aut
G=〈
θ〉

Aut
cG, 其中
θ 的阶是(
p-1)
pm-1; 若
p=2, 则 Aut
G=〈
θ1,
θ2〉

Aut
cG, 其中〈
θ1,
θ2〉=〈
θ1〉×〈
θ2〉
Z2m-2 ×
Z2.
(ii) 如果
G的幂指数是
pm, 那么Aut
cG/Inn
G 
Sp(2
n,p).
(iii) 如果
G的幂指数是
pm+1, 那么Aut
cG/Inn
G
K 
Sp(2n-2,p), 其中
K是
p2n-1阶超特殊
p-群(若
p是奇素数)或者 初等Abel 2- 群. 特别地, 当
n=1时, Aut
cG/Inn
G
Zp.
Abstract
In this paper, the automorphism group of a generalized extraspecial
p-group
G is determined again, where
p is a prime number. Assume that |
G| =
p2n+m and |
ζG| =
pm, where
n ≥ 1 and
m ≥ 2. Let Aut
cG be the normal subgroup of Aut
G consisting of all elements of Aut
G which act trivially on
ζG. Then
(i) If
p is odd, then Aut
G = 〈
θ〉

Aut
cG, where
θ is of order (
p - 1)
pm-1; If
p = 2, then Aut
G = 〈
θ1,
θ2〉

Aut
cG, where 〈
θ1,
θ2〉 = 〈
θ1〉 × 〈
θ2〉
Z2m-2 ×
Z2.
(ii) If the exponent of
G is equal to
pm, then Aut
cG/Inn
G 
Sp(2
n, p).
(iii) If the exponent of
G is equal to
pm+1, then Aut
cG/Inn
G
K 
Sp(2n - 2, p), where
K is an extraspecial
p-group of order
p2n-1 (If
p is odd) or an elementary abelian 2-group of order 2
2n-1. In particular, Aut
cG/Inn
G
Zp when
n = 1.
关键词
广义超特殊p-群 /
中心积 /
自同构群
{{custom_keyword}} /
Key words
generalized extraspecial p-groups /
central product /
automorphisms groups
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Robinson D. J. S., A Course in the Theory of Groups (Second Edition), New York: Springer-Verlag, 1996.
[2] Gorenstein D., Finite Groups, New York: Harper and Row, 1968.
[3] Huppert B., Endliche Gruppen, Berlin: Springer-Verlag, 1967.
[4] Winter D., The automorphism group of an extraspecial p-group, Rocky Mountain J. Math., 1972, 2: 159-168.
[5] Wang Y. L., Liu H. G., The automorphism group of a generalized extraspecial p-group, Science in China, Ser. A, 2009, 39(10): 1187-1210.
[6] David B., Elementary Number Theory (6th Edition), McGraw Hill, 2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(10971054);河南省教育厅自然科学资助项目(2011B110011);河南工业大学科研基金(10XZZ011)和河南工业大学引进人才基金资助项目(2009BS029)
{{custom_fund}}