广义超特殊p-群的自同构群(II)

王玉雷, 刘合国

数学学报 ›› 2011, Vol. 54 ›› Issue (4) : 651-658.

PDF(397 KB)
PDF(397 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (4) : 651-658. DOI: 10.12386/A2011sxxb0067
论文

广义超特殊p-群的自同构群(II)

    王玉雷1, 刘合国2
作者信息 +

The Automorphism Group of a Generalized Extraspecial p-Group (II)

    Yu Lei WANG1, He Guo LIU2
Author information +
文章历史 +

摘要

重新确定了广义超特殊p-群G的自同构群的结构. 设|G|=p2n+m, |ζG|=pm, 其中n ≥ 1, m ≥ 2, AutcG是AutG中平凡地作用在ζG上的元素形成的正规子群, 则
(i) 若p是奇素数, 则AutG=〈θ AutcG, 其中θ 的阶是(p-1)pm-1; 若p=2, 则 AutG=〈θ1, θ2 AutcG, 其中〈θ1, θ2〉=〈θ1〉×〈θ2Z2m-2 × Z2.
(ii) 如果G的幂指数是pm, 那么AutcG/InnG  Sp(2n,p).
(iii) 如果G的幂指数是pm+1, 那么AutcG/InnG K  Sp(2n-2,p), 其中Kp2n-1阶超特殊p-群(若p是奇素数)或者 初等Abel 2- 群. 特别地, 当n=1时, AutcG/InnG Zp.  

Abstract

In this paper, the automorphism group of a generalized extraspecial p-group G is determined again, where p is a prime number. Assume that |G| = p2n+m and |ζG| = pm, where n ≥ 1 and m ≥ 2. Let AutcG be the normal subgroup of AutG consisting of all elements of AutG which act trivially on ζG. Then
(i) If p is odd, then AutG = 〈θ〉  AutcG, where θ is of order (p - 1)pm-1; If p = 2, then AutG = 〈θ1, θ2 AutcG, where 〈θ1, θ2〉 = 〈θ1〉 × 〈θ2 Z2m-2 × Z2.
(ii) If the exponent of G is equal to pm, then AutcG/InnG Sp(2n, p).
(iii) If the exponent of G is equal to pm+1, then AutcG/InnG K Sp(2n - 2, p), where K is an extraspecial p-group of order p2n-1 (If p is odd) or an elementary abelian 2-group of order 22n-1. In particular, AutcG/InnG Zp when n = 1. 

关键词

广义超特殊p-群 / 中心积 / 自同构群

Key words

generalized extraspecial p-groups / central product / automorphisms groups

引用本文

导出引用
王玉雷, 刘合国. 广义超特殊p-群的自同构群(II). 数学学报, 2011, 54(4): 651-658 https://doi.org/10.12386/A2011sxxb0067
Yu Lei WANG, He Guo LIU. The Automorphism Group of a Generalized Extraspecial p-Group (II). Acta Mathematica Sinica, Chinese Series, 2011, 54(4): 651-658 https://doi.org/10.12386/A2011sxxb0067

参考文献

[1] Robinson D. J. S., A Course in the Theory of Groups (Second Edition), New York: Springer-Verlag, 1996.

[2] Gorenstein D., Finite Groups, New York: Harper and Row, 1968.

[3] Huppert B., Endliche Gruppen, Berlin: Springer-Verlag, 1967.

[4] Winter D., The automorphism group of an extraspecial p-group, Rocky Mountain J. Math., 1972, 2: 159-168.

[5] Wang Y. L., Liu H. G., The automorphism group of a generalized extraspecial p-group, Science in China, Ser. A, 2009, 39(10): 1187-1210.

[6] David B., Elementary Number Theory (6th Edition), McGraw Hill, 2005.

基金

国家自然科学基金资助项目(10971054);河南省教育厅自然科学资助项目(2011B110011);河南工业大学科研基金(10XZZ011)和河南工业大学引进人才基金资助项目(2009BS029)

PDF(397 KB)

Accesses

Citation

Detail

段落导航
相关文章

/