广义函数Denjoy积分的收敛性问题

刘巧玲, 叶国菊

数学学报 ›› 2011, Vol. 54 ›› Issue (4) : 659-664.

PDF(392 KB)
PDF(392 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (4) : 659-664. DOI: 10.12386/A2011sxxb0068
论文

广义函数Denjoy积分的收敛性问题

    刘巧玲, 叶国菊
作者信息 +

Some Problems on the Convergence of Distributional Denjoy Integral

    Qiao Ling LIU, Guo Ju YE
Author information +
文章历史 +

摘要

本文讨论广义函数Denjoy积分的收敛性问题. 首先给出了广义Denjoy可积函数空间中强收敛、弱收敛、弱* 收敛和广义函数Denjoy积分收敛的关系; 证明拟一致收敛是广义函数Denjoy积分 收敛的一个充分必要条件; 最后指出了Denjoy可积广义函数列弱* 收敛与强收敛等价当且仅当原函数等度连续.  

Abstract

This paper discusses some problems on the convergence of distributional Denjoy integral. Firstly, we give the relations between strong convergence, weak convergence, weak* convergence and distributional Denjoy integral convergence in the space of Denjoy integrable distributions. We prove the quasi-uniform convergence is a sufficient and necessary condition of the convergence of distributional Denjoy integral. Finally, we show that weak* convergence and strong convergence are equivalent if and only if the sequence of the primitive of Denjoy integrable distribution are equicontinuous.  

关键词

广义函数Denjoy积分 / 强收敛 / 弱收敛

Key words

Denjoy distributional integral / strong convergence / weak convergence

引用本文

导出引用
刘巧玲, 叶国菊. 广义函数Denjoy积分的收敛性问题. 数学学报, 2011, 54(4): 659-664 https://doi.org/10.12386/A2011sxxb0068
Qiao Ling LIU, Guo Ju YE. Some Problems on the Convergence of Distributional Denjoy Integral. Acta Mathematica Sinica, Chinese Series, 2011, 54(4): 659-664 https://doi.org/10.12386/A2011sxxb0068

参考文献

[1] Erik T., The Denjoy distributional integration, Real Anal. Exchang, 2008, 33: 51-82.

[2] Lee P. Y., Lanzhou Lectures on Henstock Integration, Singapore: World Scientific, 1989.

[3] Ye G. J., On Henstock-Kurzweil and McShane integrals of Banach space-valued functions, J. Math. Anal. Appl., 2007, 330: 753-765.

[4] Ye G. J., Schwabik S., The McShane integral of Banach space-valued functions defined on Rm, Illinois J. Math., 2002, 46(4): 1125-1144.

[5] Schwabik S., Ye G. J., Topics In Banach Space Integration, Singapore: World Scientific, 2005.

[6] Zhong C. K., Fan X. L., Chen W. Y., Introduction to Nonlinear Functional Analysis, Lanzhou: Lanzhou University Press, 1998 (in Chinese).

基金

国家自然科学基金资助项目(10871059)

PDF(392 KB)

Accesses

Citation

Detail

段落导航
相关文章

/