设N, H是任意的群. 若存在群G,它具有正规子群Ñ ≤ Z(G),使得Ñ ≌ N且G/Ñ ≌ H, 则称群G为N被H的中心扩张.本文完全分类了当N为p3阶初等交换p群及H为内交换p群时, N被H的中心扩张得到的所有不同构的群. 从而我们完全分类了初等交换p群被内交换p群的中心扩张得到的所有不同构的群.
Abstract
Assume N and H are groups. If there is a group G which has a normal subgroup Ñ ≤ Z(G) such that Ñ ≌ N and G/Ñ ≌ H, then G is called a central extension of N by H. In this paper, we classified all groups which are central extensions of N by H, where N is an elementary abelian p-group of order p3 and H is an inner abelian p-group. Thus all groups which are central extensions of an elementary abelian p-group by an inner abelian p-group are classified.
关键词
中心扩张 /
初等交换p群 /
内交换p群
{{custom_keyword}} /
Key words
central extension /
elementary abelian p-groups /
inner abelian p-groups
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Qu H. P., Sun Y., Zhang Q. H., Finite p-groups in which the number of subgroups of possible order is lessthan or equal to p3, Chin. Ann. Math., 2010, 31B(4): 497-506.
[2] Zhang Q. H., Li L. L., Xu M. Y., Finite p-groups all of whose quotient groups are abelian or inner-abelian,Comm. Alg., 2010, 38: 2797-2807.
[3] Zhang Q. H., Guo X. Q., Qu H. P., Xu M. Y., Finite groups which have many normal subgroups, J. KoreanMath. Soc., 2009, 46(6): 1165-1178.
[4] Li L. L., Qu H. P., Chen G. Y., The central extension of inner Abelian p-groups I, Acta Mathematica Sinica,2010, 53(4): 675-684.
[5] Qu H. P., Zhang Q. H., The central extension of inner Abelian p-groups II, Acta Mathematica Sinica, ChineseSeries, 2010, 53(5): 933-944.
[6] Qu H. P., Hu R. F., The central extension of inner Abelian p-groups III, Acta Mathematica Sinica, ChineseSeries, 2010, 53(6): 1051-1064.
[7] Xu M. Y., Introduction to Finite Groups (I), The Second Edition, Beijing: Science Press, 1999.
[8] Xu M. Y., Huang J. H., Li H. L., Li S. R., Introduction to Finite Groups (II), Beijing: Science Press, 1999.
[9] R′edei L., Das schiefe Product in der Gruppentheorie, Comm. Math. Helv., 1947, 20: 225-267.
[10] Berkovich Y., Janko Z., Structure of finite p-groups with given subgroups, Contemp. Math., 2006, 402:13-93.
[11] Glauberman G., Large subgroups of small class in finite p-groups, J. Algebra, 2004, 272(1): 128-153.
[12] Glauberman G., Abelian subgroups of small index in finite p-groups, J. Group Theory, 2005, 8(5): 539-560.
[13] Glauberman G., Centrally large subgroups of finite p-groups, J. Algebra, 2006, 300(2): 480-508.
[14] Janko Z., Finite 2-groups with exactly four cyclic subgroups of order 2n, J. Reine Angew. Math., 2004, 566:135-181.
[15] Robinson D. J. S., A Course in the Theory of Groups, New York: Springer-Verlag, 1980.
[16] Suzuki M., Group Theory I, New York: Springer-Verlag, 1982.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(11071150);山西省自然科学基金(2008012001)和山西省回国留学人员科研项目([2007]13-56)
{{custom_fund}}