内交换p群的中心扩张(IV)

曲海鹏, 郑丽峰

数学学报 ›› 2011, Vol. 54 ›› Issue (5) : 739-752.

PDF(476 KB)
PDF(476 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (5) : 739-752. DOI: 10.12386/A2011sxxb0078
论文

内交换p群的中心扩张(IV)

    曲海鹏, 郑丽峰
作者信息 +

The Central Extension of Inner Abelian p-Groups (IV)

    Hai Peng QU, Li Feng ZHENG
Author information +
文章历史 +

摘要

N, H是任意的群. 若存在群G,它具有正规子群ÑZ(G),使得ÑNG/ÑH, 则称群GNH的中心扩张.本文完全分类了当Np3阶初等交换p群及H为内交换p群时, NH的中心扩张得到的所有不同构的群. 从而我们完全分类了初等交换p群被内交换p群的中心扩张得到的所有不同构的群.  

Abstract

Assume N and H are groups. If there is a group G which has a normal subgroup ÑZ(G) such that ÑN and G/ÑH, then G is called a central extension of N by H. In this paper, we classified all groups which are central extensions of N by H, where N is an elementary abelian p-group of order p3 and H is an inner abelian p-group. Thus all groups which are central extensions of an elementary abelian p-group by an inner abelian p-group are classified.  

关键词

中心扩张 / 初等交换p / 内交换p

Key words

central extension / elementary abelian p-groups / inner abelian p-groups

引用本文

导出引用
曲海鹏, 郑丽峰. 内交换p群的中心扩张(IV). 数学学报, 2011, 54(5): 739-752 https://doi.org/10.12386/A2011sxxb0078
Hai Peng QU, Li Feng ZHENG. The Central Extension of Inner Abelian p-Groups (IV). Acta Mathematica Sinica, Chinese Series, 2011, 54(5): 739-752 https://doi.org/10.12386/A2011sxxb0078

参考文献

[1] Qu H. P., Sun Y., Zhang Q. H., Finite p-groups in which the number of subgroups of possible order is lessthan or equal to p3, Chin. Ann. Math., 2010, 31B(4): 497-506.

[2] Zhang Q. H., Li L. L., Xu M. Y., Finite p-groups all of whose quotient groups are abelian or inner-abelian,Comm. Alg., 2010, 38: 2797-2807.

[3] Zhang Q. H., Guo X. Q., Qu H. P., Xu M. Y., Finite groups which have many normal subgroups, J. KoreanMath. Soc., 2009, 46(6): 1165-1178.

[4] Li L. L., Qu H. P., Chen G. Y., The central extension of inner Abelian p-groups I, Acta Mathematica Sinica,2010, 53(4): 675-684.

[5] Qu H. P., Zhang Q. H., The central extension of inner Abelian p-groups II, Acta Mathematica Sinica, ChineseSeries, 2010, 53(5): 933-944.

[6] Qu H. P., Hu R. F., The central extension of inner Abelian p-groups III, Acta Mathematica Sinica, ChineseSeries, 2010, 53(6): 1051-1064.

[7] Xu M. Y., Introduction to Finite Groups (I), The Second Edition, Beijing: Science Press, 1999.

[8] Xu M. Y., Huang J. H., Li H. L., Li S. R., Introduction to Finite Groups (II), Beijing: Science Press, 1999.

[9] R′edei L., Das schiefe Product in der Gruppentheorie, Comm. Math. Helv., 1947, 20: 225-267.

[10] Berkovich Y., Janko Z., Structure of finite p-groups with given subgroups, Contemp. Math., 2006, 402:13-93.

[11] Glauberman G., Large subgroups of small class in finite p-groups, J. Algebra, 2004, 272(1): 128-153.

[12] Glauberman G., Abelian subgroups of small index in finite p-groups, J. Group Theory, 2005, 8(5): 539-560.

[13] Glauberman G., Centrally large subgroups of finite p-groups, J. Algebra, 2006, 300(2): 480-508.

[14] Janko Z., Finite 2-groups with exactly four cyclic subgroups of order 2n, J. Reine Angew. Math., 2004, 566:135-181.

[15] Robinson D. J. S., A Course in the Theory of Groups, New York: Springer-Verlag, 1980.

[16] Suzuki M., Group Theory I, New York: Springer-Verlag, 1982.

基金

国家自然科学基金资助项目(11071150);山西省自然科学基金(2008012001)和山西省回国留学人员科研项目([2007]13-56)

PDF(476 KB)

276

Accesses

0

Citation

Detail

段落导航
相关文章

/