广义 Weyl 型李代数 W × gln(F)上的 2-上同调群

宋光艾, 李忠杰, 王美艳

数学学报 ›› 2011, Vol. 54 ›› Issue (5) : 753-766.

PDF(472 KB)
PDF(472 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (5) : 753-766. DOI: 10.12386/A2011sxxb0079
论文

广义 Weyl 型李代数 W × gln(F)上的 2-上同调群

    宋光艾1, 李忠杰2, 王美艳3
作者信息 +

2-Cohomology Group on the Generalized Weyl Type Lie Algebras W × gln(F)

    Guang Ai SONG1, Zhong Jie LI2, Mei Yan WANG3
Author information +
文章历史 +

摘要

设F是一特征为零的域, W是F上的广义Weyl代数,gln(F) 为F上的一般线性李代数, 则结合代数W gln(F)上具有一个诱导的李代数结构, 本文讨论了李代数W gln(F)的2-上同调群的结构.  

Abstract

Let F be a field with characteristic zero, let W be a generalized Weyl type algebra over F, and gln(F) the general linear algebra, then there is induced Lie algebra structure on the associative algebra W gln(F). In the present paper, we consider the 2-cohomology group structures of the Lie algebra W gln(F).  

关键词

广义 Weyl 型李代数 / 2-上循环 / 上同调群

Key words

generalized Weyl type Lie algebras / 2-cocycles / cohomology group

引用本文

导出引用
宋光艾, 李忠杰, 王美艳. 广义 Weyl 型李代数 W × gln(F)上的 2-上同调群. 数学学报, 2011, 54(5): 753-766 https://doi.org/10.12386/A2011sxxb0079
Guang Ai SONG, Zhong Jie LI, Mei Yan WANG. 2-Cohomology Group on the Generalized Weyl Type Lie Algebras W × gln(F). Acta Mathematica Sinica, Chinese Series, 2011, 54(5): 753-766 https://doi.org/10.12386/A2011sxxb0079

参考文献

[1] Su Y., Zhao K., Simple Lie algebras of Weyl type, Science in China (A), 2001, 44: 419-426.

[2] Su Y., Zhao K., Second cohomology groups of generalized witt type Lie algebras and certain representations,Comm. Alg., 2002, 30: 3285-3309.

[3] Su Y., Zhao K., Isomorphism classes and automorphism groups of algebras of Wely type, Science in China(A), 2002, 45: 953-963.

[4] Kac V. G., Lectures on infinite wedge representation and soliton equations, Adv. in Math., 1987, 16: 343-376(in Chinese).

[5] Li W., 2-Cocycles on the algebras of differential operators, J. Alg., 1998, 122: 64-80.

[6] Li W., Wilson R. L., Central extensions of some Lie algebras, Proc. Amer. Math. Soc., 1998, 126: 2569-2577.

[7] Su Y., On the low dimensional cohomology of Kac-Moody algebras with coefficients in the complex field,Chinese Adv. in Math., 1989, 18: 346-351.

[8] Su Y., 2-Cocycles on the Lie algebras of generalized differential operators, Comm. Alg., 2002, 30(2): 763-782.

[9] Su Y., Classification of quasifinite modules over the Lie algebras of Weyl type, Adv. Math., 2003, 174:763-782.

[10] Song G., Su Y., Derivations and 2-cocycles of contact Lie algebras related to Locally-finite derivations, Comm.in Alg., 2004, 12: 4613-4631.

[11] Song G., Su Y., 2-Cocycles on the Lie superalgebras of Weyl type, Comm. in Alg., 2005, 33: 2991-3007.

[12] Kac V. G., Infinite Dimensional Lie Algebras, Combridge: 3rd edn Combridge Univ. Press, 1990.

[13] Gelfand I. M., Fuks D. B., The cohomology of the Lie Algebra of the Vector Fields in a Circle, Funct. Anal.Appl., 1968, 2: 342-343.

[14] Kac V. G., Kazhdan D. A., Lepowsky J., Wilson R. L., Realization of the basic representation on the euclideanLie algebras, Adv. in Math., 1981, 42: 83-112.

[15] Kac V. G., Peterson D. H., Spin and wedge representation of infinite dimensional Lie algebras and groups,Proc. Nat. Acad. Sci. U.S.A., 1981, 78: 3308-3312.

基金

国家自然科学基金资助项目(10871125,11071147);山东省自然科学基金(ZR2010AM003,Y2008A04)和山东省教育厅自然科学基金(J06P52)资助

PDF(472 KB)

Accesses

Citation

Detail

段落导航
相关文章

/