A-Parseval框架小波的特征刻画

黄永东, 孙娜

数学学报 ›› 2011, Vol. 54 ›› Issue (5) : 767-790.

PDF(691 KB)
PDF(691 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (5) : 767-790. DOI: 10.12386/A2011sxxb0080
论文

A-Parseval框架小波的特征刻画

    黄永东, 孙娜
作者信息 +

The Characterizations of A-Parseval Frame Wavelet

    Yong Dong HUANG, Na SUN
Author information +
文章历史 +

摘要

研究与伸缩矩阵A相关的Parseval框架小波(A-PFW)的特征刻画,其中伸缩矩阵A满足A3=2I3A的每一列元素之和均为偶数.首先,讨论了与两个特殊伸缩矩阵B,C相关的Parseval框架小波(B-PFW,C-PFW)之间的关系,并得到C-PFW分别与两类特殊伸缩矩阵D相关的Parseval框架小波(D-PFW, -PFW)之间的等价关系.其次,探讨了伪尺度函数和源于多分辨分析的A-PFW(MRA A-PFW)的特征刻画.最后,借助于维数函数,给出了A-PFW是MRA A-PFW的一个充要条件.  

Abstract

In this paper, the characterization of Parseval frame wavelets with dilation matrix A (A-PFW)is studied, where A satisfies A3 = 2I3 and the sums of the elements in each column are even number.Firstly,the relation of Parseval frame wavelets with special dilation matrix B (B-PFW) and Parseval frame wavelets with special dilation matrix C (C-PFW) is discussed, and at the same time the equivalence relations of C-PFW) and Parseval frame wavelets with two kinds of special dilation matrices D, (D-PFW, -PFW) are gave. Secondly, the characterizations of pseudo-scaling function and MRA Parseval frame wavelets with dilation matrix A (MRA A-PFW) are presented.Finally,by means of dimensional function, a sufficient and necessary condition for an A-PFW to be an MRA A-PFW is obtained.  

关键词

Parseval框架小波 / MRA Parseval框架小波 / 维数函数

Key words

Parseval frame wavelets / MRA Parseval frame wavelets / dimensional function

引用本文

导出引用
黄永东, 孙娜. A-Parseval框架小波的特征刻画. 数学学报, 2011, 54(5): 767-790 https://doi.org/10.12386/A2011sxxb0080
Yong Dong HUANG, Na SUN. The Characterizations of A-Parseval Frame Wavelet. Acta Mathematica Sinica, Chinese Series, 2011, 54(5): 767-790 https://doi.org/10.12386/A2011sxxb0080

参考文献

[1] Duffin R. J.,Schaffer A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72(2):341-366.

[2] Daubechies I., Grossman A., Meyer Y., Painless nonorthogonal expansion, J. Math. Phys., 1986, 27: 1271-1283.

[3] Henández E., Weiss G., A First Course on Wavelet, Fla: CRC Press, 1996.

[4] Daubechies I., Ten Lecture on Wavelets, Philadelphia: SIAM, 1992.

[5] Christensen O., An Introduction to Frames and Riesz Bases, Boston: Birkh¨auser, 2003.

[6] Benedetto J. J., Li S., The theory of multiresolution analysis frames and applications to filter banks, Appl.Comput. Harmonic Anal., 1998, 5(4): 389-427.

[7] Chui C. K., He W., Stockler J., Compactly supported tight affine frames with integer dilation and maximumvanishing moments, Adv. Comput. Math., 2003, 18(2): 159-187.

[8] Daubechies I., Han B., Ron A., Shen Z., Framelets: MRA-based constructions of wavelet frames, Appl.Comput. Harmonic Anal., 2003, 14(1): 1-46.

[9] Ron A., Shen Z., Affine system in L2(Rd) I: the analysis of the analysis operator, J. Func. Anal., 1997,148(2): 408-447.

[10] Ron A., Shen Z., Affine system in L2(Rd) II: dual system, J. Fourier Anal. Appl., 1997, 3(6): 617-637.

[11] Ehler M., On multivariate compactly supported Bi-Frames, J. Fourier Anal. Appl., 2007, 13(5): 511-532.

[12] Lai M., Stockler J., Construction of multivariate compactly supported tight wavelets frames, Appl. Comput.Harmonic Anal., 2006, 21(3): 324-348.

[13] Bownik M., A characterization of affine dual frame in L2(Rn), Appl. Comput. Harmonic Anal., 2000, 8(2):282-309.

[14] Paluszyński M., Siki? H., Weiss G., The characterization of low pass filters and some basic properties ofwavelets, scaling functions and related concepts, J. Fourier Anal. Appl., 1999, 5: 495-521.

[15] Paluszyński M., Siki? H., Weiss G., Xiao S., Generalized low pass filters and MRA frame wavelets, J. Geom.Anal., 2001, 11(2): 311-342.

[16] Paluszyński M., Siki? H., Weiss G., Xiao S., Tight frame wavelets,their dimension functions, MRA tightframe wavelets and connectivity properties, Adv. Comput. Math., 2003, 18(3): 297-327.

[17] Cheng J. F., Li D. F., The characterization of MRA E-tight frame wavelet, Acta Mathematica Sinica, ChineseSeries, 2008, 51(5): 877-888.

[18] Baki? D., Krishtal I., Wilson E. N., Parseval frame wavelets with En(2) -dilations, Appl. Comput. HarmonicAnal., 2005, 19(2): 386-431.

[19] Wu G., Yang X., Liu Z., MRA Parseval frame wavelets and their multiplies in L2(Rn), Math. Prob. Engineering,2009, 2009: 1-17.

[20] Lian Q. F., Li Y. Z., On a class of high-dimensional FRMA wavelet frames, Acta Mathematica Sinica, ChineseSeries, 2009, 52(5): 853-860.

[21] Huang Y. D., Yang S. Z., Cheng Z. X., The construction of a class of trivariate nonseparable compactlysupported wavelets, Int. J. Wavelets, Multiresolut. Inf. Process, 2009, 7(3): 255-267.

基金

国家自然科学基金资助项目(10961001),教育部科学技术研究重点项目(209152)

PDF(691 KB)

242

Accesses

0

Citation

Detail

段落导航
相关文章

/