退化弱(L_1,L_2)-BLD映射的正则性

李聚玲;高红亚

数学学报 ›› 2004, Vol. 47 ›› Issue (6) : 1107-111.

PDF(418 KB)
PDF(418 KB)
数学学报 ›› 2004, Vol. 47 ›› Issue (6) : 1107-111. DOI: 10.12386/A2004sxxb0137
论文

退化弱(L_1,L_2)-BLD映射的正则性

    李聚玲;高红亚
作者信息 +

Regularity of Degenerate Weak (L_1,L_2)-BLD Mappings

    Ju Ling LI(1), Hong Ya GAO(2)
Author information +
文章历史 +

摘要

本文给出空间退化的弱(L1,L2)-BLD映射的定义.利用Hodge分解,弱逆Holder不等式等工具,证明了其正则性结果:对任意满足Ol,使得对任意退化的弱(L1,L2)-BLD映射f∈Wloc1,q1(Ω,Rn),都有f∈Wloc1,p1(Ω,Rn),即f为通常意义下的退化的(L1,L2)-BLD映射.

Abstract

In this paper, we give the definition of degenerate weak (L1, L2)-BLD map-pings in space, and by using the technique of Hodge decomposition and weakly reverse Holder inequality we prove the following regularity result of degenerate weak (L1,L2)-BLD mappings: For every q1 such that 0< L2lnl/2l221+l×100n2[23l/2(24l+n+1)](l-q1) < 1 there exists integrable exponent p1 = p1(n,l,q1,L1,L2) >, such that every degenerate weak (L1,L2)-BLD mapping f∈Wloc1,q1(Ω,Rn) belongs to Wloc1,p1(Ω,Rn), that is, f is a degenerate (L1,L2)-BLD mapping in the usual sense.

关键词

退化弱(L1 / L2)-BLD映射 / Hodge分解 / 弱逆H(o / ¨)lder不等式

引用本文

导出引用
李聚玲;高红亚. 退化弱(L_1,L_2)-BLD映射的正则性. 数学学报, 2004, 47(6): 1107-111 https://doi.org/10.12386/A2004sxxb0137
Ju Ling LI(1), Hong Ya GAO(2). Regularity of Degenerate Weak (L_1,L_2)-BLD Mappings. Acta Mathematica Sinica, Chinese Series, 2004, 47(6): 1107-111 https://doi.org/10.12386/A2004sxxb0137
PDF(418 KB)

252

Accesses

0

Citation

Detail

段落导航
相关文章

/