The open set condition is an important concept in fractal geometry. And, the weak separation condition (WSC) plays an important role in the study of iterated function systems (IFS) with overlaps. In this paper, we consider self-conformal IFS satisfying the WSC, and we present a way to determine the Hausdorff dimension of the invariant set relevant.
Zhi Rong WU, Yuan Ling YE.
Self-Conformal IFS with the WSC. Acta Mathematica Sinica, Chinese Series, 2011, 54(6): 881-892 https://doi.org/10.12386/A2011sxxb0089
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Hutchinson J. E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30: 713-747.
[2] Fan A. H., Lau K. S., Iterated function system and Ruelle operator, J. Math. Anal. Appl., 1999, 231: 319-344.
[3] Lau K. S., Ngai S. M., Multifractal measures and a weak Separation condition, Adv. Math., 1999, 141: 45-96.
[4] Ye Y. L., Multifractal of self-conformal measures, Nonlinearity, 2005, 18: 2111-2133.
[5] Lau K. S., Ngai S. M., Wang X. Y., Separation conditions for conformal iterated function systems, Monatshefte Für Mathematik, 2009, 156: 325-355.
[7] Chen E. C., Xiong J. C., Hausdorff dimension of sub-self-similar sets, Journal of University of Science and Technology of China, 2004, 34: 535-542.
[8] Mcclure M., Vallin R. W., The Borel structure of the collections of sub-self-similar sets and super-self-similar sets, Acta Math. Univ. Comenianae, 2000, 69: 145-149.
[9] Liu H., Hausdorff Dimension of Sub-Self-Conformal Sets, Guangzhou: Master Degree Thesis of South China Normal University, 2006.
[10] Wu Z. R., Contractive Conformal Iterated Function System and Weak Separation Condition, Guangzhou: Master Degree Thesis of South China Normal University, 2008.
[11] Ye Y. L., Separation properties for self-conformal sets, Studia Math., 2002, 152: 33-44.
[12] Zerner M. P. W., Weak separation properties for self-similar sets, Proc. Amer. Math. Soc., 1996, 124: 3529-3539.
[13] Falconer K., Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 1989, 106: 543-554.