设H为复Hilbert空间, Sa(H)代表H上的有界自伴算子组成的空间, Φ:Sa(H)→Sa(H)是满射且复数ξ,η ∈ C\{1}, 则Φ满足 W(AB-ξBA)=W(Φ(A)Φ(B)-ηΦ(B)Φ(A))对所有A,B ∈ Sa(H)成立当且仅当存在酉算子或者共轭酉算子U,使得Φ(A)=UAU*对所有A ∈ Sa(H)成立,或者 Φ(A)=-UAU*对所有A ∈ Sa(H)成立.
Abstract
Let H be a complex Hilbert space and Sa(H) the space of all self adjoint operators on H. Φ : Sa(H) → Sa(H) is a surjective map. For ξ, η ∈ C\ {1}, then Φ satisfies that W(AB - ξBA) = W(Φ(A)Φ(B) - ηΦ(B)Φ(A)) for all A,B ∈ Sa(H) if and only if there exists a unitary operator or con-unitary operator U such that Φ(A) = UAU* for all A ∈ Sa(H) or Φ(A) = -UAU* for all A ∈ Sa(H).
关键词
数值域 /
保持映射 /
因子乘积
{{custom_keyword}} /
Key words
Numerical range /
preservers /
product up to a factor
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Chan J. T., Numerical radius preserving operators on B(H), Proc. Amer. Math. Soc., 1995, 123: 1437-1439.
[2] Chan J. T., Numerical radius preserving operators on C*-algebras, Arch. Marh. Basel, 1998, 70: 486-488.
[3] Cui J. L., Hou J. C., Linear maps preserving the closure of numerical range on nest algebras with maximal atomic nest, Int. Equ. Oper. Theo., 2003, 46: 253-266.
[4] Li C. K., Tsing N. K., Linear Preservers on Numerical Ranges, Numerical Radii and Unitary Similarity Invariant Norms, Linear and Multilinear Algebra, Volume 33, November 1992, pages 63-73.
[5] Bai Z. F., Hou J. C., Numerical radius distance preserving maps on B(H), Proc. Amer. Math. Soc., 2004, 132: 1453-1461.
[6] Bai Z. F., Hou J. C., Xu Z. B., Maps preserving numerical radius on C*-algebras, Studia Math., 2004, 162: 97-104.
[7] Cui J. L., Hou J. C., Non-linear numerical radius isometries on atomic nest algebras and diagonal algebras, J. Funct. Anal., 2004, 206: 414-448.
[8] Hou J. C., Di Q. H., Maps preserving numerical range of operator products, Proc. Amer. Math. Soc., 2006, 134: 1435-1446.
[9] He K., Hou J. C., Zhang X. L., Maps preserving numerical radius or cross norms of products of self-adjoint operators, Acta Mathematica Sinica, English Series, 2010, 26(6): 1071-1086
[10] Li C. K., Sze N. S., Product of operators and numerical range preserving maps, Studia Math., 2006, 174: 169-182.
[11] Cui J. L., Hou J. C., Maps preserving functional values of operator products invariant, Linear Algebra Appl., 2008, 428(7): 1649-1663.
[12] Gau H. L., Li C. K., C*-isomorphisms, jordan isomorphisms, and numerical range preserving maps, Proc. Amer. Math. Soc., 2007, 135: 2907-2914.
[13] Chan J. T., Li C. K., Sze N. S., Mappings on matrices: Invariance of functional values of matrix products, J. Austral. Math. Soc. Serie A, 2006, 81: 165-184.
[14] Brooke James A., Busch P., Pearson David B., Commutativity up to a factor of bounded operators in complex Hilbert space, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2002, 458: 109-118.
[15] Dolinar G., Kuzma B., General preservers of quasi-commutativity on hermitian matrices, Electron J. Linear Algebra, 2008, 17: 436-444.
[16] Dolinar G., Kuzma B., General preservers of quasi-commutativity on self-adjoint operators, J. Math. Anal. Appl., 2010, 364: 567-575.
[17] Wigner E. P., Group Theory: And Its Application to the Quantum Mechanics of Atomic Spectra, New York: Academic Press, 1959.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}