自伴算子空间上保因子乘积数值域的映射

贺衎, 侯晋川, Dolinar GREGOR, Kuzma BONJA

数学学报 ›› 2011, Vol. 54 ›› Issue (6) : 925-932.

PDF(285 KB)
PDF(285 KB)
数学学报 ›› 2011, Vol. 54 ›› Issue (6) : 925-932. DOI: 10.12386/A2011sxxb0093
论文

自伴算子空间上保因子乘积数值域的映射

    贺衎1, 侯晋川1, Dolinar GREGOR2, Kuzma BONJA3
作者信息 +

Maps on Self-Adjoint Operators Preserving Numerical Range of Products up to a Factor

    Kan HE1, Jin Chuan HOU1, Dolinar GREGOR2, Kuzma BONJA3
Author information +
文章历史 +

摘要

H为复Hilbert空间, Sa(H)代表H上的有界自伴算子组成的空间, Φ:Sa(H)→Sa(H)是满射且复数ξ,ηC\{1}, 则Φ满足 W(AB-ξBA)=W(Φ(A)Φ(B)-ηΦ(B)Φ(A))对所有A,BSa(H)成立当且仅当存在酉算子或者共轭酉算子U,使得Φ(A)=UAU*对所有ASa(H)成立,或者 Φ(A)=-UAU*对所有ASa(H)成立.  

Abstract

Let H be a complex Hilbert space and Sa(H) the space of all self adjoint operators on H. Φ : Sa(H) → Sa(H) is a surjective map. For ξ, ηC\ {1}, then Φ satisfies that W(AB - ξBA) = W(Φ(A)Φ(B) - ηΦ(B)Φ(A)) for all A,BSa(H) if and only if there exists a unitary operator or con-unitary operator U such that Φ(A) = UAU* for all ASa(H) or Φ(A) = -UAU* for all ASa(H).  

关键词

数值域 / 保持映射 / 因子乘积

Key words

Numerical range / preservers / product up to a factor

引用本文

导出引用
贺衎, 侯晋川, Dolinar GREGOR, Kuzma BONJA. 自伴算子空间上保因子乘积数值域的映射. 数学学报, 2011, 54(6): 925-932 https://doi.org/10.12386/A2011sxxb0093
Kan HE, Jin Chuan HOU, Dolinar GREGOR, Kuzma BONJA. Maps on Self-Adjoint Operators Preserving Numerical Range of Products up to a Factor. Acta Mathematica Sinica, Chinese Series, 2011, 54(6): 925-932 https://doi.org/10.12386/A2011sxxb0093

参考文献

[1] Chan J. T., Numerical radius preserving operators on B(H), Proc. Amer. Math. Soc., 1995, 123: 1437-1439.

[2] Chan J. T., Numerical radius preserving operators on C*-algebras, Arch. Marh. Basel, 1998, 70: 486-488.

[3] Cui J. L., Hou J. C., Linear maps preserving the closure of numerical range on nest algebras with maximal atomic nest, Int. Equ. Oper. Theo., 2003, 46: 253-266.

[4] Li C. K., Tsing N. K., Linear Preservers on Numerical Ranges, Numerical Radii and Unitary Similarity Invariant Norms, Linear and Multilinear Algebra, Volume 33, November 1992, pages 63-73.

[5] Bai Z. F., Hou J. C., Numerical radius distance preserving maps on B(H), Proc. Amer. Math. Soc., 2004, 132: 1453-1461.

[6] Bai Z. F., Hou J. C., Xu Z. B., Maps preserving numerical radius on C*-algebras, Studia Math., 2004, 162: 97-104.

[7] Cui J. L., Hou J. C., Non-linear numerical radius isometries on atomic nest algebras and diagonal algebras, J. Funct. Anal., 2004, 206: 414-448.

[8] Hou J. C., Di Q. H., Maps preserving numerical range of operator products, Proc. Amer. Math. Soc., 2006, 134: 1435-1446.

[9] He K., Hou J. C., Zhang X. L., Maps preserving numerical radius or cross norms of products of self-adjoint operators, Acta Mathematica Sinica, English Series, 2010, 26(6): 1071-1086

[10] Li C. K., Sze N. S., Product of operators and numerical range preserving maps, Studia Math., 2006, 174: 169-182.

[11] Cui J. L., Hou J. C., Maps preserving functional values of operator products invariant, Linear Algebra Appl., 2008, 428(7): 1649-1663.

[12] Gau H. L., Li C. K., C*-isomorphisms, jordan isomorphisms, and numerical range preserving maps, Proc. Amer. Math. Soc., 2007, 135: 2907-2914.

[13] Chan J. T., Li C. K., Sze N. S., Mappings on matrices: Invariance of functional values of matrix products, J. Austral. Math. Soc. Serie A, 2006, 81: 165-184.

[14] Brooke James A., Busch P., Pearson David B., Commutativity up to a factor of bounded operators in complex Hilbert space, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2002, 458: 109-118.

[15] Dolinar G., Kuzma B., General preservers of quasi-commutativity on hermitian matrices, Electron J. Linear Algebra, 2008, 17: 436-444.

[16] Dolinar G., Kuzma B., General preservers of quasi-commutativity on self-adjoint operators, J. Math. Anal. Appl., 2010, 364: 567-575.

[17] Wigner E. P., Group Theory: And Its Application to the Quantum Mechanics of Atomic Spectra, New York: Academic Press, 1959.

基金

国家自然科学基金资助项目(10771157)

PDF(285 KB)

Accesses

Citation

Detail

段落导航
相关文章

/