纵向数据下关于估计方程估计

赵目, 陈柏成, 周勇

数学学报 ›› 2012, Vol. 55 ›› Issue (1) : 1-16.

PDF(714 KB)
PDF(714 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (1) : 1-16. DOI: 10.12386/A2012sxxb0001
论文

纵向数据下关于估计方程估计

    赵目1,2, 陈柏成3, 周勇1,3
作者信息 +

Generalized Estimating Equation Estimators with Longitudinal Data

    Mu ZHAO1,2, Bai Cheng CHEN3, Yong ZHOU1,3
Author information +
文章历史 +

摘要

广义估计方程方法是一种最一般的参数估计方法, 广泛地应用于生物统计、经济计量、医疗保险等领域.在纵向数据下, 由于组间数据是相关的, 为了提高估计的效率, 广义估计方程方法一般需要考虑个体组内相关性.因此, 大多数文献对个体组内的协方差矩阵进行参数假设,但假设的合理性及协方差矩阵估计的好坏对参数估计效率产生很大影响,同时参数假设也可能导致模型误判.针对纵向数据下广义估计方程, 本文提出了改进的GMM方法和经验似然方法, 并对给出的估计量建立了大样本性质. 其中分块的思想, 避免了对个体组内相关性结构进行假设, 从这种意义上说, 这种方法具有一定的稳健性.我们还通过两个模拟的例子, 考察了文中提出估计量的有限样本性质.  

Abstract

Generalized estimating equations method as a powerful method for estimating parameters, is wildly used in many fields, such as biostatistics, econometrics and medical insurance, and so on. For longitudinal data, We should take account into within-subject correlation structure in order to improve efficiency of a estimator. It is often useful to suppose that there is a parametric assumption within-subject correlation in longitudinal data analysis. But unreasonable assumptions made on within-subject correlation structure can result in inefficient estimation for parameters or even result in misspecification. For the generalized estimating equations with longitudinal data, we propose the extended GMM methods and extended EL methods and construct the large sample properties for our estimators. One of the proposed EL methods which is called block empirical likelihood is robust because of avoiding any assumptions on withinsubject correlation structure. We also provide two simulation examples to illustrate the finite properties for our estimators.  

关键词

纵向数据 / 广义估计方程 / 经验似然

Key words

longitudinal data / generalized estimating equations / empirical likelihood

引用本文

导出引用
赵目, 陈柏成, 周勇. 纵向数据下关于估计方程估计. 数学学报, 2012, 55(1): 1-16 https://doi.org/10.12386/A2012sxxb0001
Mu ZHAO, Bai Cheng CHEN, Yong ZHOU. Generalized Estimating Equation Estimators with Longitudinal Data. Acta Mathematica Sinica, Chinese Series, 2012, 55(1): 1-16 https://doi.org/10.12386/A2012sxxb0001

参考文献

[1] Laird N, Ware J., Random-effects models for longitudinal data, Biometrics, 1982, 38(4): 963-974.



[2] Liang K., Zeger S., Longitudinal data analysis using generalized linear models, Biometrika, 1986, 38(4): 13-22.



[3] Diggle P., Liang K., Zeger S., Analysis of Longitudinal Data, Oxford: Oxford University Press, 1994.



[4] Diggle P., Heagerty P., Liang K., Zeger S., Analysis of Longitudinal Data, Oxford: Oxford University Press, 2002.



[5] Zeger S., Diggle P., Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters, Biometrics, 1994, 50(3): 689-699.



[6] Lin X. H., Carrol R. J., Semiparametric regression for clustered data using generalized estimating equation, Journal of the American Statistical Association, 2001, 96(455): 1045-1056.



[7] He X.M., Zhu Z. Y., FungW. K., Estimation in a semiparametric model for longitudinal data with unspecified dependence structure, Biometrika, 2002, 89(3): 579-590.



[8] You J., Chen G., Zhou Y., Block empirical likelihood for longitudinal partially linear regression models, The Canadian Journal of Statistics, 2006, 34(1): 79-96.



[9] Li G., Tian P., Xue L., Generalized empirical likelihood Inference in semeparametric regression model for longitudinal data, Acta Mathematica Sinica, English Series, 2008, 24(12): 2029-2040.



[10] Hoover D., Rice J., Wu C., Yang L., Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data, Biometrika, 1998, 85(4): 809-822.



[11] Sun Y., Wu H., AUC-based tests for nonparametric functions with longitudinal data, Statistica Sinica, 2003, 13(3): 593-612.



[12] Wu C., Chiang C., Hoover D., Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data, Journal of the American Statistical Association, 1998, 93(444): 1388-1389.



[13] Martinussen T., Scheike T., A semiparametric additive regression model for longitudinal data, Biometrika, 1999, 86(3): 691-701.



[14] Martinussen T., Scheike T., A nonparametric dynamic additive regression model for longitudinal data, The Annals of Statistics, 2000, 28(4): 1000-1025.



[15] Martinussen T., Scheike T., Sampling adjusted analysis of dynamic additive regression models for longitudinal data, Scandinavian Journal of Statistics, 2001, 28(2): 303-323.



[16] Lin D., Ying Z., Semiparametric and nonparametric regression analysis of longitudinal data, Journal of the American Statistical Association, 2001, 96(453): 103-126.



[17] Fan J. Q., Li R. Z., New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis, Journal of the American Statistical Association, 2004, 99(467): 710-723.



[18] Qin J., Lawless J., Empirical likelihood and general estimating equations, The Annals of Statistics, 1994, 22(1): 300-325.



[19] Zhou Y., Wan T., Yuan Y., Combining least-squares and quantile regressions, Journal of Statistical Planning and Inference, 2011, 141: 3814-3828.



[20] Hansen L., Large sample properties of generalized method of moments estimators, Econometrica: Journal of the Econometric Society, 1982 50(4): 1029-1054.



[21] Hansen L., Heaton J., Yaron A., Finite-sample properties of some alternative GMM estimators, Journal of Business and Economic Statistics, 1996, 14(3): 262-280.



[22] Newey W., McFadden D., Large sample estimation and hypothesis testing, Handbook of Econometrics, 1994, 4: 2111-2245.



[23] Brown B., Newey W., Generalized method of moments, efficient bootstrapping, and improved inference, Journal of Business and Economic Statistics, 2002, 20(4): 507-517.



[24] Hall A., Generalized Method of Moments, Oxford: Oxford University Press, USA, 2005.



[25] Zhou Y., Wan T., Wang X., Estimating equations inferences with missing data, Journal of the American Statistical Association, 103(483): 1187-1199.



[26] Ye H., Pan J., Modelling of covariance structures in generalised estimating equations for longitudinal data, Biometrika, 2006, 93(4): 927-941.



[27] Wang S., Qian L., Carroll R., Generalized empirical likelihood methods for analyzing longitudinal data, Biometrika, 2010, 97(1): 79-93.



[28] Owen A. B., Empirical likelihood ratio confidence intervals for a single functional, Biometrika, 1988, 75(2): 237-249.



[29] Owen A. B., Empirical likelihood ratio confidence regions, The Annals of Statistics, 1990, 18(1): 90-120.



[30] Qin G., Jing B., Empirical likelihood for censored linear regression, Scandinavian Journal of Statistics, 28(4): 661-673.



[31] Liu Q., Xue L., Chen F., Empirical Likelihood Confidence Regions of Parameters in a Censored Partially Linear EV Model, Acta Mathematica Sinica, Chinese Series, 2009, 52(3): 549-560.



[32] Xue L., Zhu L., Empirical likelihood for a varying coefficient model with longitudinal data, Journal of the American Statistical Association, 2007, 102(478): 642-654.



[33] Xue L., Zhu L., Empirical likelihood semiparametric regression analysis for longitudinal data, Biometrika, 2007, 94(4): 921-937.



[34] Yang H., Li T., Empirical likelihood for semiparametric varying coefficient partially linear models with longitudinal data, Statistics and Probability Letters, 2010, 80(2): 111-121.

基金

国家杰出青年基金(70825004); 国家自然科学基金重点资助项目(10731010); 国家自然科学基金委创新研究群体科学基金(10721101); 国家973项目子项目(2007CB814902); 上海财经大学211工程三期重点学科建设项目; 上海市重点学科建设资助项目(B803)

PDF(714 KB)

Accesses

Citation

Detail

段落导航
相关文章

/