p-Laplacian 算子导出的半变分不等式的特征值问题

葛斌, 周庆梅

数学学报 ›› 2012 ›› Issue (2) : 207-218.

PDF(560 KB)
PDF(560 KB)
数学学报 ›› 2012 ›› Issue (2) : 207-218. DOI: 10.12386/A2012sxxb0021
论文

p-Laplacian 算子导出的半变分不等式的特征值问题

    葛斌1, 周庆梅2
作者信息 +

Eigenvalue Problems for Hemivariational Inequality Driven by the p-Laplacian

    Bin GE1, Qing Mei ZHOU2
Author information +
文章历史 +

摘要

研究了一类具有非光滑局部Lipschitz位势(半变分不等式)的非线性特征值问题

其中 1 < p < ∞,Ω ⊂ RN是有界区域.目的是把最近的超线性(即 p = 2)问题的非平凡解存在性和连续性结果推广到一般情况 (即 1 < p <∞).不仅推广了 Miyagaki and Souto 研究工作[Superlinear Problems without Ambrosetti and Rabinowitz Growth Condition,Jour.Diff.Equa.,245 (2008) 3628-3638],同时也推广了Schechter和 Zou 的研究工作 [Superlinear Problems,Pacific J.Math.,214 (2004) 145-160].本文使用的方法基于局部Lipschitz函数的非光滑临界点理论.

Abstract

We consider a kind of nonlinear eigenvalue problem driven by the p-laplacian with a nonsmooth locally Lipschitz potential (hemivariational inequality), that is, 
where 1 < p < ∞, and Ω ⊂ RN is a bounded domain. The purpose of this paper is to extend earlier existence and continuation results of nontrivial solutions of the problem in the superline case (i.e., p = 2) to the general case (i.e., 1 < p < ∞). We not only extend the existence results of nontrivial solutions for almost every parameter λ due to Miyagaki and Souto [Superlinear Problems without Ambrosetti and Rabinowitz Growth Condition, Jour. Diff. Equa., 245 (2008) 3628-3638], but also extend the existence results of nontrivial solutions for every parameter λ due to Schechter and Zou [Superlinear Problems, Pacific J. Math., 214 (2004) 145-160] to the general case when 1 < p < ∞. Our approach is based on the non-smooth critical point theory for locally Lipschitz functions.

关键词

p-Laplacian / 非线性特征值问题 / 超线性问题 / 变分方法

Key words

p-Laplacian / nonlinear eigenvalue problem / superlinear problems / variational method

引用本文

导出引用
葛斌, 周庆梅. p-Laplacian 算子导出的半变分不等式的特征值问题. 数学学报, 2012(2): 207-218 https://doi.org/10.12386/A2012sxxb0021
Bin GE, Qing Mei ZHOU. Eigenvalue Problems for Hemivariational Inequality Driven by the p-Laplacian. Acta Mathematica Sinica, Chinese Series, 2012(2): 207-218 https://doi.org/10.12386/A2012sxxb0021

参考文献

[1] Barletta G., Marano S., Some remarks on the critical point theory for locally Lipschitz functions, Glasgow Math. J., 2003, 45: 131-141.

[2] Motreanu D., Panagiotopoulos P., A minimax approach to the eigenvalue problem of hemivariational inequalities and applications, Appl. Anal., 1995, 58: 53-76.

[3] Goeleven D., Motreanu D., Panagiotopoulos P., Eigenvalue problems for variational-hemivariational inequalities at resonance, Nonlinear Anal., 1998, 33: 161-180.

[4] Gasinski L., Papageorgiou N. S., Existence of solutions and of multiple solutions for eigenvalue problems of hemivariational inequalities, Adv. Math. Sci. Appl., 2001, 11: 437-464.

[5] Gasinski L., Papageorgiou N. S., Multiple solutions for nonlinear hemivariational inequalities near resonance, Funkcial. Ekvac., 2000, 43: 271-284.

[6] Goeleven D., Motreanu D., A degree theoretic approach for the study of eigenvalue problems in variationalhemivariational inequalities, Differential Integral Equations, 1997, 10: 893-904.

[7] Miyagaki O. H., Souto M. A. S., Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 2008, 245: 3628-3638.

[8] Schechter M., Zou W., Superlinear problems, Pacific J. Math., 2004, 214: 145-160.

[9] Chen Z. C., Luo T., The eigenvalue problem for p-Laplacian-Like equations, Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 631-638.

[10] An L., Eigenvalue problems for the p-Laplacian, Nonlinear Analysis, 2006, 64: 1057-1099.

[11] Lindqvist P., On the equation div(|▽u|p?2u)+λ|u|p?2u = 0, Proc. Amer. Math. Soc., 1990, 109: 157-164.

[12] Naniewicz Z., Panagiotopoulos P., Mathematical Theory of Hemivariational Inequalities and Applications, New York: Marcel Dekker, 1995.

[13] Hu S., Papageorgiou N. S., Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian, Nonlinear Analysis, 2008, 69: 4286-4300.

[14] Gasinski L., Papageorgiou N. S., Nonlinear Analysis, Boca Raton: Chapman and Hall, CRC Press, 2006.

[15] Clarke F. H., Optimization and Nonsmooth Analysis, New York: Wiley, 1983.

[16] Kandilakis D., Kourogenis N. C., Papageorgiou N. S., Two nontrivial critical points for nonsmooth functionals via local linking and Applications, J. Glob. Optim., 2006, 34: 219-244.

[17] Chang K. C., Variational methods for non-differentiable functionals and their applications to partial defferential equations, J. Math. Anal. Applic., 1981, 80: 102-129.

基金

国家自然科学基金(11126286,10971043,11001063);中央高校基本科研业务费专项资金(20111134);中国博士后基金(20110491032);黑龙江省杰出青年基金(JC200810);省自然科学基金(A200803)

PDF(560 KB)

Accesses

Citation

Detail

段落导航
相关文章

/