研究了一类具有非光滑局部Lipschitz位势(半变分不等式)的非线性特征值问题

其中 1 <
p < ∞,Ω ⊂ R
N是有界区域.目的是把最近的超线性(即
p = 2)问题的非平凡解存在性和连续性结果推广到一般情况 (即 1 <
p <∞).不仅推广了 Miyagaki and Souto 研究工作[Superlinear Problems without Ambrosetti and Rabinowitz Growth Condition,
Jour.Diff.Equa.,245 (2008) 3628-3638],同时也推广了Schechter和 Zou 的研究工作 [Superlinear Problems,
Pacific J.Math.,214 (2004) 145-160].本文使用的方法基于局部Lipschitz函数的非光滑临界点理论.
Abstract
We consider a kind of nonlinear eigenvalue problem driven by the p-laplacian with a nonsmooth locally Lipschitz potential (hemivariational inequality), that is,

where 1 <
p < ∞, and Ω ⊂ R
N is a bounded domain. The purpose of this paper is to extend earlier existence and continuation results of nontrivial solutions of the problem in the superline case (i.e.,
p = 2) to the general case (i.e., 1 <
p < ∞). We not only extend the existence results of nontrivial solutions for almost every parameter λ due to Miyagaki and Souto [Superlinear Problems without Ambrosetti and Rabinowitz Growth Condition,
Jour. Diff. Equa., 245 (2008) 3628-3638], but also extend the existence results of nontrivial solutions for every parameter λ due to Schechter and Zou [Superlinear Problems,
Pacific J. Math., 214 (2004) 145-160] to the general case when 1 <
p < ∞. Our approach is based on the non-smooth critical point theory for locally Lipschitz functions.
关键词
p-Laplacian /
非线性特征值问题 /
超线性问题 /
变分方法
{{custom_keyword}} /
Key words
p-Laplacian /
nonlinear eigenvalue problem /
superlinear problems /
variational method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Barletta G., Marano S., Some remarks on the critical point theory for locally Lipschitz functions, Glasgow Math. J., 2003, 45: 131-141.
[2] Motreanu D., Panagiotopoulos P., A minimax approach to the eigenvalue problem of hemivariational inequalities and applications, Appl. Anal., 1995, 58: 53-76.
[3] Goeleven D., Motreanu D., Panagiotopoulos P., Eigenvalue problems for variational-hemivariational inequalities at resonance, Nonlinear Anal., 1998, 33: 161-180.
[4] Gasinski L., Papageorgiou N. S., Existence of solutions and of multiple solutions for eigenvalue problems of hemivariational inequalities, Adv. Math. Sci. Appl., 2001, 11: 437-464.
[5] Gasinski L., Papageorgiou N. S., Multiple solutions for nonlinear hemivariational inequalities near resonance, Funkcial. Ekvac., 2000, 43: 271-284.
[6] Goeleven D., Motreanu D., A degree theoretic approach for the study of eigenvalue problems in variationalhemivariational inequalities, Differential Integral Equations, 1997, 10: 893-904.
[7] Miyagaki O. H., Souto M. A. S., Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 2008, 245: 3628-3638.
[8] Schechter M., Zou W., Superlinear problems, Pacific J. Math., 2004, 214: 145-160.
[9] Chen Z. C., Luo T., The eigenvalue problem for p-Laplacian-Like equations, Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 631-638.
[10] An L., Eigenvalue problems for the p-Laplacian, Nonlinear Analysis, 2006, 64: 1057-1099.
[11] Lindqvist P., On the equation div(|▽u|p?2▽u)+λ|u|p?2u = 0, Proc. Amer. Math. Soc., 1990, 109: 157-164.
[12] Naniewicz Z., Panagiotopoulos P., Mathematical Theory of Hemivariational Inequalities and Applications, New York: Marcel Dekker, 1995.
[13] Hu S., Papageorgiou N. S., Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian, Nonlinear Analysis, 2008, 69: 4286-4300.
[14] Gasinski L., Papageorgiou N. S., Nonlinear Analysis, Boca Raton: Chapman and Hall, CRC Press, 2006.
[15] Clarke F. H., Optimization and Nonsmooth Analysis, New York: Wiley, 1983.
[16] Kandilakis D., Kourogenis N. C., Papageorgiou N. S., Two nontrivial critical points for nonsmooth functionals via local linking and Applications, J. Glob. Optim., 2006, 34: 219-244.
[17] Chang K. C., Variational methods for non-differentiable functionals and their applications to partial defferential equations, J. Math. Anal. Applic., 1981, 80: 102-129.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(11126286,10971043,11001063);中央高校基本科研业务费专项资金(20111134);中国博士后基金(20110491032);黑龙江省杰出青年基金(JC200810);省自然科学基金(A200803)
{{custom_fund}}