O-解析函数紧致奇点的可去性

王晋勋, 李兴民

数学学报 ›› 2012 ›› Issue (2) : 231-234.

PDF(374 KB)
PDF(374 KB)
数学学报 ›› 2012 ›› Issue (2) : 231-234. DOI: 10.12386/A2012sxxb0023
论文

O-解析函数紧致奇点的可去性

    王晋勋1, 李兴民2
作者信息 +

Removability of Compact Singularities of Left O-Analytic Functions

    Jin Xun WANG1, Xing Min LI2
Author information +
文章历史 +

摘要

借助于Adams等人的代数方法,我们证明了多八元数左O-解析函数以及满足一类微分方程的左O-解析函数的紧致奇点的可去性.

Abstract

In this paper, appeal to the algebraic method proposed by Adams et al., we prove the removability of compact singularities of left O-analytic functions of several octonionic variables and left O-analytic functions which satisfy a kind of partial differential equations.

关键词

八元数 / O-解析 / O-整函数

Key words

octonion / left O-analytic / left O-entire function

引用本文

导出引用
王晋勋, 李兴民. O-解析函数紧致奇点的可去性. 数学学报, 2012(2): 231-234 https://doi.org/10.12386/A2012sxxb0023
Jin Xun WANG, Xing Min LI. Removability of Compact Singularities of Left O-Analytic Functions. Acta Mathematica Sinica, Chinese Series, 2012(2): 231-234 https://doi.org/10.12386/A2012sxxb0023

参考文献

[1] Hartogs F., Einige folgerungen aus der cauchyschen integralformel bei funktionen meherer veeranderlichen, Munch. Sitzungber., 1906, 36: 223-241.
[2] Pertici D., Funzioni regolari di piú variabili quaternioniche, Ann. Mat. Pura. Appl., Serie IV, CLI, 1988, 151: 39-65.
[3] Adams W. W., Berenstein C. A., Loustaunau P. et al, Regular functions of several quaternionic variables and the Cauchy-Fueter complex, J. Geom. Anal., 1999, 9: 1-15.
[4] Adams W. W., Berenstein C. A., Loustaunau P. et al., On compact singularities for regular functions of one quaternionic variable, Complex Variables Theory Appl., 1996, 31: 259-270.
[5] Jacobson N., Basic Algebra I (2nd ed), New York: W. H. Freeman and Company, 1985.
[6] Li X. M., Octonion Analysis, Beijing: Peking Univ., Ph.D. Thesis, 1998 (in Chinese).
[7] Li X. M., Peng L. Z., Three-line theorem on the octonions, Acta Mathematica Sinica, English Series, 2004, 20(3): 483-490.
[8] Li X. M., Peng L. Z., Qian T., The Paley-Wiener theorem in the non-commutative and non-associative octonions, Science in China, Series A, 2009, 52: 129-141.
[9] Liao J. Q., Li X. M., Wang J. X., Orthonormal basis of the octonionic analytic functions, J. Math. Anal. Appl., 2010, 366: 335-344.
[10] Liao J. Q., Li X. M., An improvement of the octonionic Taylor type theorem, Acta Math. Sci., 2011, 31B(2): 561-566.
[11] Northcott D. G., Finite Free Resolutions, Cambridge Tracts in Mathematics, No. 71, Cambridge: Cambridge University Press, 1976.

基金

广东省部产学研结合项目(2009B080701077)

PDF(374 KB)

Accesses

Citation

Detail

段落导航
相关文章

/