多圆柱上Bloch型空间之间的等距复合算子

方中山, 周泽华

数学学报 ›› 2012 ›› Issue (2) : 273-280.

PDF(418 KB)
PDF(418 KB)
数学学报 ›› 2012 ›› Issue (2) : 273-280. DOI: 10.12386/A2012sxxb0027
论文

多圆柱上Bloch型空间之间的等距复合算子

    方中山1,2, 周泽华1
作者信息 +

Isometric Composition Operators on the Bloch Type Space in the Polydisk

    Zhong Shan FANG1,2, Ze Hua ZHOU1
Author information +
文章历史 +

摘要

简单介绍了一些解析函数构成的Banach空间上的满等距的结果,然后刻画了多圆柱上 α-Bloch空间复合算子的等距,并得到了复合算子等距的充要条件.

Abstract

We first give a brief survey on some results about surjective isometries on some Banach spaces of analytic functions. Then we characterize the isometries among the composition operators acting on the α-Bloch space in the polydisk, and necessar yand sufficient conditions are given for composition operators to be isometric.

关键词

等距 / 复合算子 / Bloch型空间

Key words

isometric / composition operator / Bloch type space

引用本文

导出引用
方中山, 周泽华. 多圆柱上Bloch型空间之间的等距复合算子. 数学学报, 2012(2): 273-280 https://doi.org/10.12386/A2012sxxb0027
Zhong Shan FANG, Ze Hua ZHOU. Isometric Composition Operators on the Bloch Type Space in the Polydisk. Acta Mathematica Sinica, Chinese Series, 2012(2): 273-280 https://doi.org/10.12386/A2012sxxb0027

参考文献

[1] Banach S., Theorie des Operations Lineares, Chelsea: Warzaw, 1932.

[2] Kolaski C. J., Isometries of weighted Bergman spaces, Can.J. Math., 1982, 34: 910-915.

[3] Kolaski C. J., Isometries of some smooth spaces of analytic functions, Complex Variables, 1988, 10: 115-122.

[4] Koranyi A., Vagi S., On isometries of Hp of bounded symmetruc domains, Cann. J. Math., 1976, 28: 334-340.

[5] Cima J., Wogen W. R., On isometries of the Bloch spaces, Illinois J. Math., 1980, 24: 313-316.

[6] Hornor W., Jamison J. E., Isometries of some Banach spaces of analytic functions, Integral Equations Operator Theory, 2001, 41: 410-425.

[7] Matheson A., Isometries into function algebras, Houston J. Math., 2004, 30: 219-230.

[8] Krantz S. G., Ma D., On isometric isomorphisms of the Bloch space in the unit ball, Michigan Math. J., 1989, 36: 173-180.

[9] Chen L., Operators on the Bloch and Bergman Spaces of Several Complex Variables, Ph. D. Thesis ay Univ. of California at Irvine, 1994.

[10] Shapiro J. H., Composition Operators and Classical Function Theory, New York: Springer-Verlag, 1993.

[11] Cowen C. C., MacCluer B. D., Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.

[12] Fang Z. S., Zhou Z. H., Differences of composition operators on the space of bounded analytic functions in the polydisc, Abstract and Applied Analysis, 2008, 2008: 1-10, Article ID 983132.

[13] Fang Z. S., Zhou Z. H., Differences of composition operators on the space of bounded analytic functions in the polydisc, Bull. Aust. Math. Soc., 2009, 79: 465-471.

[14] Zhang M. Z., Chen H. H., Weighted composition operators of H into α-Bloch spaces on the unit ball, Acta Mathematica Sinica, English Series, 2009, 25(2): 265-278.

[15] Zhou Z. H., Liu Y., The essential norms of composition operators between generalized Bloch spaces in the Polydisc and its applications, Journal of inequalities and applications, 2006, 2006: 1-22, Article ID 90742.

[16] Zhou Z. H., Shi J. H., Compactness of composition operators on the Bloch space in classical bounded symmetric domains, The Michigan Mathematical Journal, 2002, 50: 381-405.

[17] Cload B. A., Composition operators: hyperinvariant subspaces, quasi-normals and isometries, Proc. Amer. Math. Soc., 1999, 127: 1697-1703.

[18] Carswell B. J., Hammond C., Composition operators with maximal norm on weighted Bergman spaces, Proc. Amer. Math. Soc., 2006, 134: 2599-2605.

[19] Martín M. J., Vukoti? D., Isometries of some Classical Function Spaces Among the Composition Operators, Recent Advances in Operator-Related Function Theory, 133-138, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006.

[20] Martín M. J., Vukoti? D., Isometries of the Dirichlet space among the composition operators, Proc. Amer. Math. Soc., 2006, 134: 1701-1705.

[21] Martín M. J., Vukoti? D., Isometries of the Bloch space among the composition operators, Bull. London Math. Soc., 2007, 39: 151-155.

[22] Laitila J., Isometric composition operators on BMOA, Math. Nachr., 2010, 283(11): 1646-1653.

[23] Xiong C., Norm of composition operators on the Bloch space, Bull. Austral. Math. Soc., 2004, 70: 293-299.

[24] Collingwood E. F., Lohwater A. J., The Theory of Cluster Sets, Cambridge: Cambridge University Press, 1966.

[25] Bonet J., Lindström M., Wolf E., Isometric weighted composition operators on weighted Banach spaces of type H, Proc. Amer. Math. Soc., 2008, 136(12): 4267-4273.

[26] Cohen J. M., Colonna F., Isometric composition operators on the Bloch space in the polydisk, Contemporary Mathematics, Banach Spaces of Analytic Functions, 2008, 454: 9-21.

[27] Allen R. F., Colonna F., Isometric composition operators on the Bloch space in Cn, J. Math. Anal. Appl., 2009, 355: 675-688.

[28] Allen R. F., Colonna F., Isometries and spectra of multiplication operators on the Bloch space, Bull. Aust. Math. Soc., 2009, 79: 147-160.

[29] Boyd C., Rueda P., Isometries of weighted spaces of holomorphic functions on unbounded domains, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 2009, 139A: 253-271.

[30] Rudin W., Function Theory in Polydiscs, New York: Benjamin, 1969.

[31] Wolf E., Differences of composition operators between weighted Banach spaces of holomorphic functions on the unit polydisk, Result. Math., 2008, 51: 361-372.

[32] Zorboska N., Isometric composition operators on the Bloch-type spaces, C. R. Math. Acad. Sci. Soc. R. Can., 2007, 29(3): 91-96.

基金

国家自然科学基金资助项目(10971153, 10671141)

PDF(418 KB)

Accesses

Citation

Detail

段落导航
相关文章

/