In the present paper we will study the relations between spectra and tilings in two special cases. We first estimate and compare the Lebesgue measure of sets in the spectra-tilings relations. This includes a generalization of several results when the density method fails to apply, and the comparison of Lebesgue measure of sets among the orthogonal pairs, packing pairs and covering pairs. We then clarify some spectratilings relations between the translative pairs (D,Λ+Γ) and (D+Λ,Γ). The research here is based on the fundamental properties of spectra and tilings, and is closely related to the dual Fuglede conjecture.
Jian Lin LI, Li YAN, Hai Hong YAO.
Measure Estimates and Translative Pairs in the Spectra-Tilings Relations. Acta Mathematica Sinica, Chinese Series, 2012, 55(3): 449-456 https://doi.org/10.12386/A2012sxxb0042
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gabardo J. P., Nashed M. Z., Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal., 1998,158: 209-241. [2] Gabardo J. P., Nashed M. Z., An Analogue of A. Cohen’s Condition for Nonuniform Multiresolution Analyses,in: Wavelets, Multiwavelets and Their Applications (A. Aldroubi, E. B. Lin, Eds.), ContemporaryMathematics, Vol. 216, American Mathematical Society, Providence, RI, 1998, 41-61. [3] Wang Y., Wavelets, tiling and spectral sets, Duke Math. J., 2002, 114: 43-57. [4] Liu Y. M., Wang Y., The uniformity of non-uniform Gabor bases, Adv. Comput. Math., 2003, 18: 345-355. [5] Yu X., Gabardo J. P., Nonuniform wavelets and wavelet sets related to one-dimensional spectral pairs, J.Approx. Theory, 2007, 145: 133-139. [6] Li H. Y., Sun J. C., Xu Y., Discrete Fourier analysis with lattices on planar domains, Numerical Algorithms,2010, 55: 279-300. [7] Fuglede B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct.Anal., 1974, 16: 101-121. [8] Tao T., Fuglede’s conjecture is false in 5 and higher dimensions, Math. Research Letters, 2004, 11: 251-258. [9] Farkas B., Matolcsi M., Móra P., On Fuglede’s conjecture and existence of universal spectra, J. Fourier Anal.Appl., 2006, 12(5): 483-494. [10] Jorgensen P. E. T., Pedersen S., Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl., 1999, 5:285-302. [11] Pedersen S., The dual spectral set conjecture, Proc. Amer. Math. Soc., 2004, 132: 2095-2101. [12] Li J. L., On characterizations of spectra and tilings, J. Funct. Anal., 2004, 213: 31-44. [13] Lagarias J. C., Reeds J. A., Wang Y., Orthonormal bases of exponentials for the n-cube, Duke Math. J.,2000, 103: 25-37. [14] Kolountzakis M. N., Packing, tiling, orthogonality and completeness, Bull. London Math. Soc., 2000, 32:589-599. [15] Kolountzakis M. N., Non-symmetric convex domains have no basis of exponentials, Illinois J. Math., 2000,44(3): 542-550. [16] Kolountzakis M. N., The Study of Translational Tiling with Fourier Analysis, Proceedings of the MilanoConference on Fourier Analysis and Convexity, 2001, 131-187; Appl. Numer Harmon Anal., BirkhauserBoston, Boston, MA, 2004. [17] Li J. L., Duality properties between spectra and tilings, Science China Math., 2010, 53(5): 1307-1317. [18] Jorgensen P. E. T., Pedersen S., Estimates on the Spectrum of Fractals Arising from Affine Tterations, in:Fractal Geometry and Stochastics (C. Bandt, S. Graf, and M. Zähle, Eds.), Progress in Probability, Vol. 37,1995, 191-219. [19] Iosevich A., Pedersen S., Spectral and tiling properties of the unit cube, Internat. Math. Res. Notices, 1998,16: 819-828.