(2,q)阶分数差分方程的解

程金发, 吴国春

数学学报 ›› 2012, Vol. 55 ›› Issue (3) : 469-480.

PDF(503 KB)
PDF(503 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (3) : 469-480. DOI: 10.12386/A2012sxxb0044
论文

(2,q)阶分数差分方程的解

    程金发, 吴国春
作者信息 +

The Solution of Fractional Difference Equations of Order (2, q)

    Jin Fa CHENG, Guo Chun WU
Author information +
文章历史 +

摘要

首次提出了一种分数阶差分,分数阶和分以及分数阶差分方程的定义,并给出(2,q)阶常系数分数阶差分方程的具体解法.

Abstract

We first present a kind of new definition of fractional difference, fractional summation, and fractional equations, give methods for explicitly solving fractional difference equations of order (2, q) by use of the method of undetermined coefficients.

关键词

分数阶差分 / 分数阶和分 / 分数(k,q)阶差分方程

Key words

fractional difference / fractional summation / fractional difference equation of order (2, q)

引用本文

导出引用
程金发, 吴国春. (2,q)阶分数差分方程的解. 数学学报, 2012, 55(3): 469-480 https://doi.org/10.12386/A2012sxxb0044
Jin Fa CHENG, Guo Chun WU. The Solution of Fractional Difference Equations of Order (2, q). Acta Mathematica Sinica, Chinese Series, 2012, 55(3): 469-480 https://doi.org/10.12386/A2012sxxb0044

参考文献

[1] Hale J. K., Ordinary Differential Equations, Wiley, New York, 1969.
[2] Hatman P., Ordinary Differential Equations, Second Edition, Birkhauser, Boston, Basel, Stuttgart, 1982.
[3] Agarwal R. P., Difference Equations and Inequalities, Marcel Dekker, Inc., New York, 1992.
[4] Samko S. G., Kilbas A. A., Maritchev O. I., Integrals and Derivatives of the Fractional Order and Some oftheir Applications, Naukai Tekhnika, Minsk, 1987.
[5] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, JohnWiley and Sons, New York, 1993.
[6] Podlubny I., Fractional Differential Equations, Acad Press, San Diego, 1999.
[7] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations,North-Holland Mathematics Studies, 204, Elsevier, 2006.
[8] Vu K. T., Gorenflo R., Extrapolation to the limit for numerical fractional differentiation, ZAMM, 1995, 75:646-648.
[9] Diethelm K., Ford N. J., Multi-order fractional differential equations and their numerical solution, Appl.Math. Comput., 2004, 154: 621-640.
[10] Daftardar-Gejji V., Babakhani A., Analysis of a system of fractional differential equations, J. Math. Anal.Appl., 2004, 293: 511-522.
[11] Ibrahim R. W., Momani S., On the existence and uniqueness of solutions of a class of fractional differentialequations, J. Math. Anal. Appl., 2007, 334(1): 1-11.
[12] Lakshmikantham V., Theory of fractional functional differential equations, Nonl. Anal. TMA, 2008, 69(8):2677-2682.
[13] Zheng Z. X., On the developments and applications of fractional differential equations, J. of Xuzhou NormalUniv. Natural Science Edition, 2008, 26(2): 1-10 (in Chinese).
[14] Cheng J. F., The solution of fractional difference equations of order (k, q), Acta Mathematicae ApplicataeSinica, 2011, 34(2): 313-330 (in Chinese).
[15] Cheng J. F., The Theory of Fractional Difference Equations, Xiamen University Press, Xiamen, 2011 (inChinese).

基金

福建省自然科学基金资助项目(2011J01021); 中央高校基本科研业务费专项基金(2011121039)
PDF(503 KB)

213

Accesses

0

Citation

Detail

段落导航
相关文章

/