二维带跳Navier-Stokes方程解的大偏差原理

赵辉艳

数学学报 ›› 2012, Vol. 55 ›› Issue (3) : 499-516.

PDF(537 KB)
PDF(537 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (3) : 499-516. DOI: 10.12386/A2012sxxb0047
论文

二维带跳Navier-Stokes方程解的大偏差原理

    赵辉艳
作者信息 +

Large Deviations for 2-D Stochastic Navier-Stokes Equations with Jumps

    Hui Yan ZHAO
Author information +
文章历史 +

摘要

在带泊松跳二维随机Navier-Stokes方程解的解的存在唯一性的基础上,利用弱收敛的方法证明了带泊松跳二维随机Navier-Stokes方程解的Freidlin-Wentzell 型的大偏差原理.

Abstract

In this paper, under the existence and uniqueness of the solution of stochastic 2-D Navier-Stokes equation, we prove Freidlin-Wentzell’s large deviation principle for 2-D Stochastic Navier-Stokes Equation driven by multiplicative noise with Poisson jumps by using weak convergence approach.

关键词

二维随机Navier-Stokes 方程 / 泊松跳测度 / 大偏差原理

Key words

2-D stochastic Navier-Stokes equation / poisson jumps / large deviation

引用本文

导出引用
赵辉艳. 二维带跳Navier-Stokes方程解的大偏差原理. 数学学报, 2012, 55(3): 499-516 https://doi.org/10.12386/A2012sxxb0047
Hui Yan ZHAO. Large Deviations for 2-D Stochastic Navier-Stokes Equations with Jumps. Acta Mathematica Sinica, Chinese Series, 2012, 55(3): 499-516 https://doi.org/10.12386/A2012sxxb0047

参考文献

[1] Zhao H., On Existence and Uniqueness of Stochastic 2-D Navier-Stokes Equation with Poisson Jumps,submitted.
[2] Liu W., Large deviation for stochastic evolution equations with small multiplicative noise, to appear in App.Math. Opt.
[3] Ren J., Zhang X., Schilder theorem for the Brownian motion on the diffeomorphism group of the circle, J.Funct. Anal., 2005, 224(1): 107-133.
[4] Ren J., Zhang X., Freidlin-Wentzell’s large deviations for homeomorphism flows of non-Lipschitz SDEs, Bull.Sci. Math., 2005, 129(8): 643-655.
[5] Ren J., Zhang X., Freidlin-Wentzell’s large deviations for stochastic evolution equations, J. FunctionalAnalysis, 2008, 254: 3148-3172.
[6] Sritharan S. S., Sundar P., Large deviations for the two-dimensional Navier-Stokes equations with multiplicativenoise, Stochastic Process. Appl., 2006, 116(11): 1636-1659.
[7] Duan J., Millet A., Large deviations for the Boussinesq equations under random influences, StochasticProcess. Appl., 2009, 119(6): 2052-2081.
[8] Xu T., Zhang T., Large deviation principles for 2-D stochastic Navier-Stokes equations driven by Lévyprocesses, J. Funct. Anal., 2009, 257(5): 1519-1545.
[9] Dong Z., Xie Y., Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise, Sci. China Ser.A, 2009, 52(7): 1497-1524.
[10] Prév?ot C., Röckner M., A Concise Course on Stochastic Partial Differential Equations, Lecture Notes inMathematics, 1905, Springer, Berlin, 2007, vi+144 pp.
[11] Gyöngy I., Krylov N. V., On Stochastic Equations with Respect to Semimartingales I, Stochastics, 1980, 4:1-21.
[12] Budhiraja A., Dupuis P., Maroulas V., Variational representations for continuous time process, submitted.
[13] Teman R., Navier-Stokes Equation and Nonlinear Functional Analysis, Society for Industrial and AppliedMathematics, 1983.
[14] Menaldi J. L., Sritharan S. S., Stochastic 2-D Navier-Stokes equation, Appl. Math. Optim., 2002, 46(1):31-53.
[15] Kallenberg O., Foundations of Modern Probability, Second Edition, Applied Probability Trust, New York,2002.
[16] Jacod J., Shiryaev A., Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, New York, 1980.
PDF(537 KB)

Accesses

Citation

Detail

段落导航
相关文章

/