Quantization of a Schrödinger-Virasoro Type Lie Algebra
Wei WANG1, Ying XU2
Author information+
1. School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, P. R. China; 2. Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China
The construction of quantizations of Lie bialgebra is an important method to produce new quantum group. In this paper, we quantize a Schrödinger-Virasoro type Lie algebra by a Drinfel’d twist element and obtain a noncommutative and noncocommutative Hopf algebra.
Wei WANG, Ying XU.
Quantization of a Schrödinger-Virasoro Type Lie Algebra. Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 707-714 https://doi.org/10.12386/A2012sxxb0067
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Roger C., Unterberger J., The Schrödinger-Virasoro Lie group and algebra: Representation theory andcohomological study, Ann. Henri Poincaré, 2006, 7: 1477-1529.
[2] Henkel M., Schrödinger invariance and strongly anisotropic critical systems, J. Stat. Phys., 1994, 75: 1023-1029.
[3] Henkel M., Unterberger J., Schrödinger invariance and spacetime symmetries, Nucl. Phys. B, 2003, 660:407-435.
[4] Henkel M., Unterberger J., Supersymmetric extensions of Schrödinger-invariance, Nucl. Phys. B, 2003, 746:155-201.
[5] Unterberger J., On vertex algebra representations of the Schrödinger-Virasoro Lie algebra, Nucl. Phys. B,2009, 823(3): 320-371.
[6] Jimbo M., A q-different analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys., 1985, 10: 63-69.
[7] Drinfeld V. G., Quantum groups, in: Proceeding of the International Congress of Mathematicians, Vol. 1,2,Berkeley, Calif. 1986, Amer. Math. Soc., Providence, RI, 1987: 798-820.
[8] Etingofand P., Schiffmann O., Lectures on Quantum Groups, 2nd edition, Intemational Press, USA, 2002.
[9] Grunspan C., Quantizations of the Witt algebra and of simple Lie algebras in characteristic p, J. Algebra,2004, 280: 145-161.
[10] Entiquez B., Halbout G., Quantization of Γ-Lie bialgebras, J. Algebra, 2008, 319: 3752-3769.
[11] Etingof P., Kazhdan D., Quantization of Lie bialgebras, part VI: Quantization of generalized Kac-Moodyalgealgebras, Transformation Groups, 2008, 32: 527-539.
[12] Hu N. H., Wang X. L., Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in themodular case, J. Algebra, 2007, 312: 902-929.
[13] Song G. A., Su Y. C., Wu Y. Z., Quantization of generalized Virasoro-like algebra, Linear Algebra and ItsApplications, 2008, 428: 2888-2899.
[14] Su Y. C., Yuan L. M., Quantization of Schrödinger-Virasoro Lie algebra, Front. Math. China, 2010, 5(4):701-715.
[15] Fa H. Y., Ding L. P., Li J. B., Classification of modules of the intermediate series over a Schrödinger-Virasorotype, J. USTC, 2010, 40(6): 590-593, 603.
[16] Fa H. X., Li Y. J., Li J. B., Schrödinger-Virasoro type Lie bialgebra: a twisted case, Front. Math. China,2011, 6(4): 641-657.
[17] Strade H., Farnsteiner F., Modular Lie Algebras and Their Representations, Monographs and Textbooks inPure and Applied Mathematics, 116, Marcel Dekker, Inc., New York, 1988.