一类Schrödinger-Virasoro型李代数的量子化

王伟, 许莹

数学学报 ›› 2012, Vol. 55 ›› Issue (4) : 707-714.

PDF(387 KB)
PDF(387 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (4) : 707-714. DOI: 10.12386/A2012sxxb0067
论文

一类Schrödinger-Virasoro型李代数的量子化

    王伟1, 许莹2
作者信息 +

Quantization of a Schrödinger-Virasoro Type Lie Algebra

    Wei WANG1, Ying XU2
Author information +
文章历史 +

摘要

李双代数的量子化是获取新的量子群的重要方法.本文通过Drinfel’d扭元,对一类Schrödinger-Virasoro型李代数进行了量子化,得到了一类既非交换又非余交换的Hopf代数.

Abstract

The construction of quantizations of Lie bialgebra is an important method to produce new quantum group. In this paper, we quantize a Schrödinger-Virasoro type Lie algebra by a Drinfel’d twist element and obtain a noncommutative and noncocommutative Hopf algebra.

关键词

Schrö / dinger-Virasoro李代数 / 量子化 / 李双代数

Key words

Schrö / dinger-Virasoro Lie algebra / quantization / Lie bialgebra

引用本文

导出引用
王伟, 许莹. 一类Schrödinger-Virasoro型李代数的量子化. 数学学报, 2012, 55(4): 707-714 https://doi.org/10.12386/A2012sxxb0067
Wei WANG, Ying XU. Quantization of a Schrödinger-Virasoro Type Lie Algebra. Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 707-714 https://doi.org/10.12386/A2012sxxb0067

参考文献

[1] Roger C., Unterberger J., The Schrödinger-Virasoro Lie group and algebra: Representation theory andcohomological study, Ann. Henri Poincaré, 2006, 7: 1477-1529.
[2] Henkel M., Schrödinger invariance and strongly anisotropic critical systems, J. Stat. Phys., 1994, 75: 1023-1029.
[3] Henkel M., Unterberger J., Schrödinger invariance and spacetime symmetries, Nucl. Phys. B, 2003, 660:407-435.
[4] Henkel M., Unterberger J., Supersymmetric extensions of Schrödinger-invariance, Nucl. Phys. B, 2003, 746:155-201.
[5] Unterberger J., On vertex algebra representations of the Schrödinger-Virasoro Lie algebra, Nucl. Phys. B,2009, 823(3): 320-371.
[6] Jimbo M., A q-different analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys., 1985, 10: 63-69.
[7] Drinfeld V. G., Quantum groups, in: Proceeding of the International Congress of Mathematicians, Vol. 1,2,Berkeley, Calif. 1986, Amer. Math. Soc., Providence, RI, 1987: 798-820.
[8] Etingofand P., Schiffmann O., Lectures on Quantum Groups, 2nd edition, Intemational Press, USA, 2002.
[9] Grunspan C., Quantizations of the Witt algebra and of simple Lie algebras in characteristic p, J. Algebra,2004, 280: 145-161.
[10] Entiquez B., Halbout G., Quantization of Γ-Lie bialgebras, J. Algebra, 2008, 319: 3752-3769.
[11] Etingof P., Kazhdan D., Quantization of Lie bialgebras, part VI: Quantization of generalized Kac-Moodyalgealgebras, Transformation Groups, 2008, 32: 527-539.
[12] Hu N. H., Wang X. L., Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in themodular case, J. Algebra, 2007, 312: 902-929.
[13] Song G. A., Su Y. C., Wu Y. Z., Quantization of generalized Virasoro-like algebra, Linear Algebra and ItsApplications, 2008, 428: 2888-2899.
[14] Su Y. C., Yuan L. M., Quantization of Schrödinger-Virasoro Lie algebra, Front. Math. China, 2010, 5(4):701-715.
[15] Fa H. Y., Ding L. P., Li J. B., Classification of modules of the intermediate series over a Schrödinger-Virasorotype, J. USTC, 2010, 40(6): 590-593, 603.
[16] Fa H. X., Li Y. J., Li J. B., Schrödinger-Virasoro type Lie bialgebra: a twisted case, Front. Math. China,2011, 6(4): 641-657.
[17] Strade H., Farnsteiner F., Modular Lie Algebras and Their Representations, Monographs and Textbooks inPure and Applied Mathematics, 116, Marcel Dekker, Inc., New York, 1988.

基金

国家自然科学基金(10825101, 11161010, 61063003);宁夏大学科学研究基金(ZR1102, ZR1121)
PDF(387 KB)

Accesses

Citation

Detail

段落导航
相关文章

/