对称算子空间上的Jordan环同构

安润玲, 侯晋川

数学学报 ›› 2012, Vol. 55 ›› Issue (6) : 991-1000.

PDF(434 KB)
PDF(434 KB)
数学学报 ›› 2012, Vol. 55 ›› Issue (6) : 991-1000. DOI: 10.12386/A2012sxxb0095
论文

对称算子空间上的Jordan环同构

    安润玲, 侯晋川
作者信息 +

Jordan Ring Isomorphism on the Space of Symmetric Operators

    Run Ling AN, Jin Chuan HOU
Author information +
文章历史 +

摘要

H为无限维的复Hilbert空间, S(H)是H上全体对称算子构成的Jordan代数, Φ: S(H) → S(H)为双射且Φ(I)=I.证明下列条件等价: (1) Φ(ABA)=Φ(A)Φ(B)Φ(A),∀ A,BS(H); (2)Φ((1/2)(AB+BA))=(1/2)Φ(A)Φ(B)+(1/2)Φ(B)Φ(A),∀ A,BS(H); (3)Φ(ABC+CBA)=Φ(A)Φ(B)Φ(C) +Φ(C)Φ(B)Φ(A),∀ A,B,CS(H); (4)Φ((1/2)(ABC+CBA))=(1/2)Φ(A)Φ(B)Φ(C)+(1/2)Φ(C)Φ(B)Φ(A), ∀ A,B,CS(H); (5) Φ是S(H)上的Jordan环同构;(6)存在有界可逆的线性或共轭线性算子 A: HH,At=A-1,使得 Φ(X)=AXAt, ∀ X∈ S(H). 得到了S(H)上Jordan环同构的新刻画.

Abstract

Let H be an infinite dimensional complex Hilbert space and S(H) be the Jordan algebra of all symmetric operators in B(H). We show that if bijective maps Φ : S(H) → S(H) with Φ(I) = I, then the following conditions are equivalent: (1) Φ(ABA) = Φ(A)Φ(B)Φ(A), ∀ A,BS(H); (2) Φ((1/2)(AB + BA)) = (1/2)Φ(A)Φ(B)+ (1/2)Φ(B)Φ(A), ∀ A,BS(H); (3) Φ(ABC +CBA) = Φ(A)Φ(B)Φ(C)+ Φ(C)Φ(B)Φ(A), ∀ A,B,CS(H); (4) Φ((1/2)(ABC + CBA)) = 1 2Φ(A)Φ(B)Φ(C) + (1/2)Φ(C)Φ(B)Φ(A), ∀ A,B,CS(H); (5) Φ is a Jordan ring isomorphism on S(H); (6) there exists a bounded invertible linear or conjugate linear operator A : HH with At = A-1 such that Φ(X) = AXAt for every XS(H). New characterizations of Jordan ring isomorphism on S(H) were got.

关键词

对称算子 / 就范正交基 / Jordan环同构

Key words

symmetric operators / orthonormal basis / Jordan ring somorphism

引用本文

导出引用
安润玲, 侯晋川. 对称算子空间上的Jordan环同构. 数学学报, 2012, 55(6): 991-1000 https://doi.org/10.12386/A2012sxxb0095
Run Ling AN, Jin Chuan HOU. Jordan Ring Isomorphism on the Space of Symmetric Operators. Acta Mathematica Sinica, Chinese Series, 2012, 55(6): 991-1000 https://doi.org/10.12386/A2012sxxb0095

参考文献

[1] Matindale III W. S., When are multiplicative mappings additive? Proc. Amer. Math. Soc., 1969, 20: 695-698.
[2] Semrl P., Isomorphisms of standard operator algebras, Proc. Ame. Math. Soc., 1995, 123: 1851-1855.
[3] Hakeda J., Additivity of ?-semigroup isomorphisms among *-algebra, Bull. London. Math. Soc., 1986, 18:51-56.
[4] Molnár L., On isomorphisms of standard operator algebras, Stud. Math., 2000: 295-302.
[5] Molnár L., Jordan maps on standard operator algebras, Functional Equations-Results and Advances, 2001:305-320
[6] Molnár L., On isomorphisms of standard operator algebras, Studia. Math., 2000, 142: 295-302.
[7] Lu F. Y., Additivity of Jordan maps on standard operator algebras, Lin. Alg. Appl., 2002, 357: 123-131.
[8] An R. L., Hou J. C., Additivity of Jordan multiplicative maps on Jordan Operator algebras, Taiwan. J.Math., 2006, 10(1): 45-64.
[9] An R. L., Hou J. C., Zhao L. K., Adjacency preserving maps on the space of symmetric operators, Lin. Alg.Appl., 2005, 405: 311-324.

基金

国家自然科学基金资助项目(11001194);山西省强校工程人才支持计划资助项目(TYAL)
PDF(434 KB)

205

Accesses

0

Citation

Detail

段落导航
相关文章

/