单位球的加权Bergman空间上具有L1符号的Toeplitz算子

何莉, 曹广福, 何忠华

数学学报 ›› 2013, Vol. 56 ›› Issue (2) : 233-244.

PDF(432 KB)
PDF(432 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (2) : 233-244. DOI: 10.12386/A2013sxxb0025
论文

单位球的加权Bergman空间上具有L1符号的Toeplitz算子

    何莉1, 曹广福2, 何忠华2
作者信息 +

Toeplitz Operators with L1 Symbols on Weighted Bergman Spaces of the Unit Ball

    Li HE1, Guang Fu CAO2, Zhong Hua HE2
Author information +
文章历史 +

摘要

讨论了单位球的加权Bergman空间Aαp(Bn,dVα)(1<p<∞)上具有L1(Bn)符号的Toeplitz算子,利用单位球上Toeplitz算子的Berezin变换,等价刻画了Aαp(Bn,dVα)上具有L1(Bn)符号的Toeplitz算子的有界性和紧性,推广了Agbor对La2(D,dA)上具有L1(D)符号的Toeplitz算子的有界性和紧性等价刻画的结论.

Abstract

We investigate the boundedness and compactness of Toeplitz operators with L1 symbols on weighted Bergman spaces of the unit ball Aαp(Bn, dVα) (1<p<∞). We describe the boundedness and compactness of Toeplitz operators with L1 symbols on Aαp(Bn, dVα) equivalently by using the Berezin transform of the Toeplitz operators, and promote the conclusion given by Agbor about the boundedness and compactness of Toeplitz operators with L1 symbols on Bergman space of the unit disk La2(D).

关键词

加权Bergman空间 / Toeplitz算子 / Berezin变换

Key words

weighted Bergman space / Toeplitz operator / Berezin transform

引用本文

导出引用
何莉, 曹广福, 何忠华. 单位球的加权Bergman空间上具有L1符号的Toeplitz算子. 数学学报, 2013, 56(2): 233-244 https://doi.org/10.12386/A2013sxxb0025
Li HE, Guang Fu CAO, Zhong Hua HE. Toeplitz Operators with L1 Symbols on Weighted Bergman Spaces of the Unit Ball. Acta Mathematica Sinica, Chinese Series, 2013, 56(2): 233-244 https://doi.org/10.12386/A2013sxxb0025

参考文献

[1] Zhu K. H., Spaces of Holomorphic Functions in the Unit Ball, Springer Science+Business Media, New York, 2005.

[2] Raimondo R., Toeplitz operators on the Bergman spaces of the unit ball, Bull. Austral. Math. Soc., 2000, 62(2): 273-285.

[3] Zhu K. H., Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Oper. Th., 1988, 20(2): 329-357.

[4] Zorboska N., Toeplitz operator with BMO symbols and the Berezin transform, IJMMS, 2003, 2003(46): 2929-2945.

[5] Agbor D., Boundness and Compactness of Toeplitz Operator with L1 Symbols on the Bergman Space, Dept. of Mathematics, Faculty of Science, University of Buea, P. O. BOX 63, Buea Cameroon, February 1, 2008.

[6] Yang J., Some problems of Toeplitz operators on Bergman space of the unit ball (in Chinese), Dalian University of Technology, Dalian, 2009: 25-45.

[7] Cao G. F., Toeplitz operators on Dirichlet space (in Chinese), Chinese Annals of Mathematics, 2000, 21A(4): 499-512.

[8] Zhu K. H., Operator Theory in Function Spaces, M. Dekker, New York, 1990.

基金

国家自然科学基金资助项目(11271092)

PDF(432 KB)

Accesses

Citation

Detail

段落导航
相关文章

/