Oseen方程弱解和强解的存在性

张万民

数学学报 ›› 2013, Vol. 56 ›› Issue (2) : 245-256.

PDF(474 KB)
PDF(474 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (2) : 245-256. DOI: 10.12386/A2013sxxb0026
论文

Oseen方程弱解和强解的存在性

    张万民
作者信息 +

The Existence of Weak and Strong Solutions for Oseen Equations

    Wan Min ZHANG
Author information +
文章历史 +

摘要

我们讨论了Oseen方程当对流函数的散度不为零时弱解和强解的存在性.利用Lax-Milgram定理, 证明了在空间H1(Ω)中弱解的存在性.在此基础上, 应用重复迭代及对偶原理等方法进一步证明了在一般的Sobolev空间中弱解和强解的存在性,并得到相应的解的不等式估计.

Abstract

We deal with the existence of weak and strong solutions for Oseen equations in the case that the divergence of convective vector is nonzero. Using Lax-Milgram Theorem, we first prove the existence of weak solution in H1(Ω), and then on the basis of this result, we use methods of iterative and dual principle to prove the existence of weak and strong solutions in generic Sobolev spaces and obtain corresponding estimates for these solutions.

关键词

很弱解 / 弱解 / 强解 / Oseen方程

Key words

very weak solution / weak solution / strong solution / Oseen equation

引用本文

导出引用
张万民. Oseen方程弱解和强解的存在性. 数学学报, 2013, 56(2): 245-256 https://doi.org/10.12386/A2013sxxb0026
Wan Min ZHANG. The Existence of Weak and Strong Solutions for Oseen Equations. Acta Mathematica Sinica, Chinese Series, 2013, 56(2): 245-256 https://doi.org/10.12386/A2013sxxb0026

参考文献

[1] Amrouche C., Rodrguez-Bellido M. A., Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Retional Mech. Anal., 2011, 199: 597-651.

[2] Temam R., Infinite-Dimensional System in Mechanics and Physics, Springer-Verlag, New York, 1988.

[3] Amrouche C., Girault V., Decomposition of vector space and application to the Stokes problem in arbitrary dimension, Czechoslovak Mathematical Journal, 1994, 44: 109-140.

[4] Cattabriga L., Su un problema al contorno relativo al sistema di equazoni di Stokes, Rend. Sem. Univ. Padova., 1961, 31: 308-340.

[5] De Rham G., Variétés Différentiables, Hermann, Paris, 1960.

[6] Adams R. A., Sobolev Spaces, Pure and Applied Mathematics 65, Academic Press, New York, London, 1975.

基金

国家自然科学基金资助项目(11041004);黑龙江省自然科学基金项目(A200913)

PDF(474 KB)

330

Accesses

0

Citation

Detail

段落导航
相关文章

/