研究了几何测度空间中的基本对称函数μ0, μ1,..., μn和内蕴体积函数V0,V1,..., Vn,证明了Ln上连续不变赋值函数空间中由基本对称函数构成的基{μ0, μ1,..., μn}和由内蕴体积函数构成的基{V0,V1,..., Vn}(或均质积分构成的基{W0,W1,..., Wn})等价.
Abstract
In this paper, the elementary symmetric functions μ0, μ1,..., μn and the intrinsic volumes V0,V1,..., Vn are investigated. We show that the elementary symmetric function basis {μ0, μ1,..., μn} and the intrinsic volume basis {V0,V1,..., Vn} defined on Ln (also the quermassintegral basis {W0,W1,..., Wn}) are equivalent.
关键词
几何测度 /
内蕴体积 /
基本对称函数 /
赋值函数 /
均质积分
{{custom_keyword}} /
Key words
geometric measure /
intrinsic volume /
elementary symmetric function /
valuation /
quermassintegral
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Alesker S., Continuous rotation invariant valuations on convex sets, Ann. of Math., 1999, 149: 977-1005.
[2] Alesker S., On P. McMullen's conjecture on translation invariant valuations, Adv. Math., 2000, 155: 239-263.
[3] Boltianskii V., Hilbert's Third Problem, Washington D. C., Halsted Press, John Wiley and Sons, New York, Toronto, London, 1978.
[4] Dehn M.,Über den Rauminhalt, Math. Ann., 1901, 55: 465-478.
[5] Gate J., Hug D., Schneider R., Valuations on convex sets of oriented hyperplanes, Discrete Comput. Geom., 2005, 33: 57-65.
[6] Groemer H., On the extension of additive functionals on classes of convex sets, Pacific J. Math., 1978, 75(2): 397-410.
[7] Hadwiger H., Glur P., Zerlegungsgleichheit ebener Polygone, Elemente der Math., 1951, 6: 97-106.
[8] Hadwiger H., Altes und Neues über Konvexe Körper, Birkhäuser Verlag, Basel und Stuttgart, Basel, 1955.
[9] Hadwiger H., Vorlesungen Über konvexw Körper, Birkhäuser Verlag, Basel, 1955.
[10] Hadwiger H., Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1957.
[11] Hug D., Schneider R., Schuster R., Integral geometry of tensor valuations, Adv. Appl. Math., 2008, 41: 482-509.
[12] Klain D., A short proof of Hadwiger's characterization theorem, Mathematika, 1995, 42: 329-339.
[13] Klain D., Star valuations and dual mixed volumes, Adv. Math., 1996, 121: 80-101.
[14] Klain D., Rota G. C., Introduction to Geometric Probability, Cambridge University Press, Cambridge, 1997.
[15] Klain D., Even valuations on convex bodies, Trans. Amer. Math. Soc., 2000, 352(1): 71-93.
[16] McMullen P., Valuations and Dissections, Handbook of Convex Geometry, Vol. A, B, North-Holland, Amsterdam, 1993: 933-988.
[17] Moszyńska M., Selected Topics in Convex Geometry, Birkhäuser Boston, Inc., Boston, MA, 2006.
[18] Sah C. H., Hilbert's Third Problem: Scissors Congruence, Pitman (Advanced Publishing Program), Boston, Mass. London, 1979.
[19] Schneider R., Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993.
[20] Schneider R., Simple valuations on convex bodies, Mathematika, 1996, 43: 32-39.
[21] Schneider R., An integral geometric theorem for simple valuations, Beitra¨ge zur Algebra Geom., 2003, 44: 487-492.
[22] Santaló L., Integral Geometry and Geometric Probability, Cambridge University Press, Cambridge, 2004.
[23] Schuster F., Valuations and Busemann-Petty type problems, Adv. Math., 2008, 219: 344-368.
[24] Zhou J., Zeng C., Zhu G., On Geometric Measures and Convexity, Proceedings of the 12th International Workshop on Differential Geometry and Related Fields, Korean Math. Soc., Seoul, 2008: 33-41.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(11161007, 11101099);贵州省科学技术基金资助项目([2010]2242)
{{custom_fund}}