有限域上一类多项式组的正交性

魏志军, 曹炜

数学学报 ›› 2013, Vol. 56 ›› Issue (4) : 575-582.

PDF(468 KB)
PDF(468 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (4) : 575-582. DOI: 10.12386/A2013sxxb0058
论文

有限域上一类多项式组的正交性

    魏志军, 曹炜
作者信息 +

On the Orthogonality of a Class of Polynomial Systems over Finite Fields

    Zhi Jun WEI, Wei CAO
Author information +
文章历史 +

摘要

研究了有限域上一类特殊的多项式组,通过特征和给出了若干判定其正交性的充分条件,从而可以用来构建这种类型的正交多项式组.

Abstract

We investigate a class of special polynomial systems over finite fields, and obtain some sufficient conditions for orthogonality via character sums, which can be used to construct orthogonal systems of this type.

关键词

有限域 / 正交多项式组 / 置换多项式 / 特征和

Key words

finite field / orthogonal system / permutation polynomial / character sum

引用本文

导出引用
魏志军, 曹炜. 有限域上一类多项式组的正交性. 数学学报, 2013, 56(4): 575-582 https://doi.org/10.12386/A2013sxxb0058
Zhi Jun WEI, Wei CAO. On the Orthogonality of a Class of Polynomial Systems over Finite Fields. Acta Mathematica Sinica, Chinese Series, 2013, 56(4): 575-582 https://doi.org/10.12386/A2013sxxb0058

参考文献

[1] Coulter R. S., Explicit evaluations of some Weil sums, Acta Arith., 1998, 83: 241-251.

[2] Coulter R. S., Further evaluations of Weil sums, Acta Arith., 1989, 86: 217-226.

[3] Coulter R. S., On the evaluation of a class of Weil sums in characteristic 2, New Zealand J. Math., 1999, 28: 171-184.

[4] Hermite C., Sur les fonctions de sept letters, C. R. Acad. Sci. Paris, 1863, 57: 750-757.

[5] Hong S. F., Additive characters and orthogonal systems of polynomials in several indeterminates over residue class rings, Chinese Sci. Bull., 1998, 43: 275-277.

[6] Jiang J. J., A note on polynomial functions over finite commutative rings (in Chinese), Adv. Math., 2010, 39: 555-560.

[7] Jiang J. J., Peng G. H., Sun Q., Zhang Q. F., On polynomial functions over finite commutative rings, Acta Mathematica Sinica, English Series, 2006, 22(4): 1047-1050.

[8] Katz N. M., Livné R., Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2 et 3, C. R. Acad. Sci. Paris Sér. I Math., 1989, 309: 723-726.

[9] Kloosterman H. D., On the representation of numbers in the form ax2+by2+cz2+dt2, Acta Math., 1926, 49: 407-464.

[10] Kononen K., Rinta-aho M., Väänänen K., On integer values of Kloosterman sums, IEEE Trans. Inform. Theory, 2010, 56: 4011-4013.

[11] Lachaud G., Wolfmann J., The weights of orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inform. Theory, 1990, 36: 686-692.

[12] Lidl R., Niederreiter H., Finite Fields, Second Edtion, Cambridge Univ. Press, Cambridge, 1997.

[13] Niederreiter H., Orthogonal systems of polynomials in finte fields, Proc. Amer. Math. Soc., 1971, 28: 415-422.

[14] Masuda A., Zieve M., Permutation binomials over finite fields, Trans. Amer. Math. Soc., 2009, 361: 4169-4180.

基金

国家自然科学基金资助项目(10901101);宁波市自然科学基金资助项目(2012A610034)与宁波大学王宽诚幸福基金资助项目

PDF(468 KB)

378

Accesses

0

Citation

Detail

段落导航
相关文章

/