一类可加和二次混合泛函方程的稳定性

王利广, 李静

数学学报 ›› 2013, Vol. 56 ›› Issue (4) : 583-596.

PDF(411 KB)
PDF(411 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (4) : 583-596. DOI: 10.12386/A2013sxxb0059
论文

一类可加和二次混合泛函方程的稳定性

    王利广1, 李静2
作者信息 +

On the Stability of a Mixed Functional Equations Deriving from Additive Mappings and Quadratic Mappings

    Li Guang WANG1, Jing LI2
Author information +
文章历史 +

摘要

本文研究了一类新的源自可加映射和二次映射的混合泛函方程
f(x + 2y) + f(x − 2y) = f(x + y) + f(x − y) + 3f(2y) − 6f(y)
及其在拟β赋范线性空间中的Hyers-Ulam稳定性.

Abstract

We introduce a new class of functional equations
f(x + 2y) + f(x − 2y) = f(x + y) + f(x − y) + 3f(2y) − 6f(y)
deriving from additive mappings and quadratic mappings and consider its Hyers-Ulam stability on quasi-β-normed linear spaces.

关键词

可加映射 / 二次映射 / β赋范线性空间

Key words

additive mapping / quadratic mapping / quasi-β-normed linear space

引用本文

导出引用
王利广, 李静. 一类可加和二次混合泛函方程的稳定性. 数学学报, 2013, 56(4): 583-596 https://doi.org/10.12386/A2013sxxb0059
Li Guang WANG, Jing LI. On the Stability of a Mixed Functional Equations Deriving from Additive Mappings and Quadratic Mappings. Acta Mathematica Sinica, Chinese Series, 2013, 56(4): 583-596 https://doi.org/10.12386/A2013sxxb0059

参考文献

[1] Czerwik S., Functional Equations and Inequalities in Several Variables, World Scientific Publ. Co., Singapore, New Jersey, London, 2002.

[2] Czerwik S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 1992, 62: 59-64.

[3] Gavruta P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapings, J. Math. Anal. Appl., 1994, 184: 431-436.

[4] Gavruta P., Rassias J. M., Zarghami R., Eskandani G. Z., Generalized Hyers-Ulam stability for a general mixed functional equation in quasi-β-normed spaces, Mediterr. J. Math., 2011, 8: 331-348.

[5] Hyers D. H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 1941, 27: 222-224.

[6] Hyers D. H., Isac G., Rassias Th. M., Stability of Functional Equations in Several Variables, Birkhauser, Boston, Besel, Berlin, 1998.

[7] Jung S. M., Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.

[8] Kim H. M., Rassias J. M., Generalization of Ulam stability problem for Euler-Lagrange quadratic mappings, J. Math. Anal. Appl., 2007, 336: 277-296.

[9] Moslehian M. S., Nikodm K., Popa D., Asymptotic aspect of the quadratic functional equation in multinormed spaces, J. Math. Anal. Appl., 2009, 355: 717-724.

[10] Najati A., Moghimi M. B., Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 1999, 238: 305-315.

[11] Najati A., Moghimi M. B., Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 2008, 337(1): 399-415.

[12] Najati A., Moradlou F., Stability of f quadratic functional equation in quasi-Banach space, Bull. Korean Math. Soc., 2008, 45(3): 587-600.

[13] Park C., On the Hyers-Ulam-Rassias stability of generalized quadratic mapping in Banach modules, J. Math. Anal. Appl., 2004, 291(1): 214-223.

[14] Park C., The Hyers-Ulam stability of a functional equation deriving from quadratic and cubic functions in quasi-β-normed spaces, Bull. Sci. Math., 2008, 132: 87-96.

[15] Park W. G., Bae J. H. On a bi-quadratic functional equation and its stability, Nonlinear Anal., 2005, 62(4): 643-654.

[16] Rassias J. M., Solution of the Ulam stability problem for an euler type quadratic functional equation, Southeast Asian Bull. Math., 2002, 26: 101-112.

[17] Rassias J. M., Kim H. M., Generalized Hyers-Ulam stability for additive functional equations in quasi-β-normed spaces, J. Math. Anal. Appl., 2009, 356: 302-309.

[18] Rassias Th. M., Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dorderecht, Boston, London, 2003.

[19] Rassias Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72: 297-300.

[20] Rassias Th. M., On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 2000, 62(1): 23-130.

[21] Skof F., Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 1983, 53: 113-129.

[22] Ulam S. M., A Collection of Mathematical Problems, Interscience Publ., New York, 1960.

[23] Wang L., Liu B., The Hyers-Ulam stability of a functional equation deriving from quadratic and cubic functions in quasi-β-normed spaces, Acta Mathematica Sinica, English Series, 2010, 26(12): 2335-2348.

基金

国家自然科学基金资助项目(10971117);山东省自然科学基金(ZR2012AM024)

PDF(411 KB)

Accesses

Citation

Detail

段落导航
相关文章

/