D(φ(εx))=0的充分必要条件

廖建全, 王晋勋

数学学报 ›› 2013, Vol. 56 ›› Issue (4) : 597-604.

PDF(463 KB)
PDF(463 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (4) : 597-604. DOI: 10.12386/A2013sxxb0060
论文

D(φ(εx))=0的充分必要条件

    廖建全1, 王晋勋2
作者信息 +

The Necessary and Sufficient Condition for D(φ(εx))=0

    Jian Quan LIAO1, Jin Xun WANG2
Author information +
文章历史 +

摘要

设Dirac算子为定义在一非空开集Ω ⊂ R8上的八元数值函数. 本文证明了,对一切常数ε ∈ O,D(φ(εx))=0的充分必要条件是φ为Ω上的Stein-Weiss解析函数.

Abstract

Let be the Dirac operator and let φ(x) be an octonionvalued function defined in a non-empty open set Ω ⊂ R8. In this paper, we prove that D(φ(εx))=0 for all ε ∈ O if and only if φ is a Stein-Weiss analytic function in Ω.

关键词

八元数 / O-解析函数 / Stein-Weiss解析函数

Key words

octonions / O-analytic function / Stein-Weiss analytic function

引用本文

导出引用
廖建全, 王晋勋. D(φ(εx))=0的充分必要条件. 数学学报, 2013, 56(4): 597-604 https://doi.org/10.12386/A2013sxxb0060
Jian Quan LIAO, Jin Xun WANG. The Necessary and Sufficient Condition for D(φ(εx))=0. Acta Mathematica Sinica, Chinese Series, 2013, 56(4): 597-604 https://doi.org/10.12386/A2013sxxb0060

参考文献

[1] Baez J. C., On quaternions and octonions: Their geometry, arithmetic, and symmetry, Bull Amer. Math. Soc., 2005, 42: 229-243.
[2] Baez J. C., The octonions, Bull. Amer. Math. Soc., 2002, 39: 145-205.
[3] Brackx F., Delanghe R., Sommen F., Clifford Analysis, Pitman Adv Pub Program, London, 1982.
[4] Clifford W. K., Applications of Grassmann's extensive algebra, Amer. J. Math., 1878, 1: 350-358.
[5] Delanghe R., Sommen F., Souček V., Clifford Algebra and Spinor-Valued Functions: A Function Theory for the Dirac Operator, Kluwer Academic Publishers, Dordrecht, 1992.
[6] Dentoni P., Sce M., Funzioni regolari nell'algebra di Cayley, Rend. Sem. Mat. Univ. Padova., 1973, 50: 251-267.
[7] Fueter R., Analytische funktionen einer quaternionenvariablen, Comment Math. Helv., 1932, 4: 9-20.
[8] Fueter R., Die funktionen theorie der differential gleichungen Δu=0 und ΔΔu=0 mit vierreellen variablen, Comment Math. Helv., 1934/1935, 7: 307-330.
[9] Hamilton W. R., Elements of Quaternions, Chelsea Publishing Company, New York, 1969.
[10] Jacobson N., Basic Algebra, Second Edition, W H Freeman and Company, New York, 1985.
[11] Li X. M., Octonion Analysis, Ph. D. Thesis, Peking University, Beijing, 1998 (in Chinese).
[12] Li X. M., Peng L. Z., Taylor series and orthogonality of the octonion analytic functions, Acta Math. Sci., 2001, 21B(3): 323-330.
[13] Li X. M., Peng L. Z., The Cauchy integral formulas on the octonions, Bull. Belg. Math. Soc. Simon. Stevin., 2002, 9: 47-64.
[14] Li X. M., Zhao K., Peng L. Z., The Laurent series on the octonions, Adv. Appl. Clifford Alg., 2001, 11(S2): 205-217.
[15] Liao J. Q., Li X. M., A note on Laurent series of the octonionic analytic functions, Adv. Appl. Clifford Alg., 2012, 22: 415-432.
[16] Liao J. Q., Li X. M., The necessary and sufficient condition for [D,φ(x), λ]=0, Acta Mathematica Sinica, Chinese Series, 2009, 52(6): 1085-1090.
[17] Manogue C. A., Dray T., Octonionic Möbius transformations, Modern Physics Letters A, 1999, 14: 1243-1255.
[18] Nono K., On the octonionic linearization of Laplacian and octonionic function theory, Bull. Fukuoka Univ. Ed. Part III, 1988, 37: 1-15.
[19] Stein E. M., Weiss G., On the theory of harmonic functions of several variables, I. The theory of Hp spaces, Acta Math., 1960, 103: 25-62.

基金

广东第二师范学院2012年博士科研专项经费研究项目资助(2012AFR03)
PDF(463 KB)

Accesses

Citation

Detail

段落导航
相关文章

/