自仿函数分数阶导数的分形维数

姚奎, 梁永顺, 苏维宜, 姚泽清

数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 693-698.

PDF(422 KB)
PDF(422 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 693-698. DOI: 10.12386/A2013sxxb0069
论文

自仿函数分数阶导数的分形维数

    姚奎1, 梁永顺2, 苏维宜3, 姚泽清1
作者信息 +

Dimension of Graphs of Fractional Derivatives of Self-Affine Curves

    Kui YAO1, Yong Shun LIANG2, Wei Yi SU3, Ze Qing YAO1
Author information +
文章历史 +

摘要

研究一类自仿函数的分数阶导数,获得了自仿函数的Weyl-Marchaud分数阶导数的图像盒维数,证明了分数阶导数的阶与分形维数之间的线性关系.

Abstract

This paper investigates the fractional derivatives of self-affine fractal curves. The upper box-counting dimension of the graphs of self-affine curves is obtained. It shows that differentiation of fractional order increases the dimension of self-affine curves.

关键词

自仿射曲线 / 分数阶导数 / 分形维数

Key words

self-affine curves / fractional derivatives / fractal dimension

引用本文

导出引用
姚奎, 梁永顺, 苏维宜, 姚泽清. 自仿函数分数阶导数的分形维数. 数学学报, 2013, 56(5): 693-698 https://doi.org/10.12386/A2013sxxb0069
Kui YAO, Yong Shun LIANG, Wei Yi SU, Ze Qing YAO. Dimension of Graphs of Fractional Derivatives of Self-Affine Curves. Acta Mathematica Sinica, Chinese Series, 2013, 56(5): 693-698 https://doi.org/10.12386/A2013sxxb0069

参考文献

[1] Falconer J., Fractal Geometry: Mathematical Foundations and Applications, John Wiley Sons Inc., New York, 1990.
[2] Kolwankar K. M., Gangal A. D., Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 1996, 6(4): 505-513.
[3] Liang Y. S., Su W. Y., The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus, Chaos, Solitons and Fractals, 2007, 34: 682-692.
[4] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley Sons Inc., New York, 2000.
[5] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, New York, 1974.
[6] Ross B., The Fractional Calculus, Fractional Calculus and Its Applications, Springer-Verlag, Berlin, Heidelberg, 1975.
[7] Ruan H. J., Su W. Y., Yao K., Box dimension and fractional integral of linear fractal interpolation functions, Journal of Approximation Theory, 2009, 161: 187-197.
[8] Tatom F. B., The relationship between fractional calculus and fractals, Fractals, 1995, 3(1): 217-229.
[9] Wen Z. Y., Mathematical Foundations of Fractal Geometry, Shanghai Sci. Tech. Edu. Publ. House, Shanghai, 2000.
[10] Yao K., Su W. Y., Liang Y. S., The upper bound of box dimension dimension of the Weyl-Marchaud fractional derivative of self-affine curves, Analysis in Theory and Applications, 2010, 26(3): 222-227.
[11] Yao K., Su W. Y., Zhou S. P., On the connection between the order of fractional calculus and the dimensions of a fractal function, Chaos, Solitons & Fractals, 2005, 23: 621-629.
[12] Yao K., Su W. Y., Zhou S. P., On the fractional calculus of a type of Weierstrass function, Chinese Annals of Mathematics, 2004, 25 (A): 711-716.
[13] Yao K., Su W. Y., Zhou S. P., The fractal dimensions of the Weyl-Marchaud fractional derivative of the Weierstrass-type function, Acta Mathematica Sinica, English Series, 2006, 22(3): 719-722.
[14] Zähle M., Ziezold H., Fractional derivatives of Weierstrass-type functions, J. Comput. Appl. Math., 1996, 76: 265-275.
[15] Zhou S. P., Yao K., Su W. Y., Fractional integrals of the Weierstrass functions: The exact box dimension, Analysis in Theory and Applications, 2004, 20(4): 332-341.

基金

国家自然科学基金资助项目(11071282, 11201230, 10571084),湘潭大学教育部智能计算与信息处理重点实验室开放课题项目(2011ICIP07)

PDF(422 KB)

217

Accesses

0

Citation

Detail

段落导航
相关文章

/