Markov调制的随机泛函微分方程解的渐近性质

王琳

数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 711-726.

PDF(590 KB)
PDF(590 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 711-726. DOI: 10.12386/A2013sxxb0071
论文

Markov调制的随机泛函微分方程解的渐近性质

    王琳
作者信息 +

Asymptotic Properties of a Class of Nonlinear Stochastic Functional Differential Equations with Markovian Switching

    Lin WANG
Author information +
文章历史 +

摘要

本文主要给出了一个新的条件,这个条件能够确保Markov调制的非线性随机泛函微分方程存在唯一解,同时这个解矩有界, 时间平均矩有界.这个条件只是以局部Lipschitz条件为前提, 线性增长条件不再是前提条件.本文的方程系数可以为多项式增长或被多项式增长限制.

Abstract

The main aim of this paper is to give a new condition which assures a class of nonlinear stochastic functional differential equations with Markovian switching have a unique solution and at the same time the moment, the moment average in time of this solution are bounded. The new condition is under the assumption of the local Lipschitz condition but neither the linear growth condition. Here we allow the coefficients of these equations are polynomial or are controlled by polynomial growth speed. An example is also given for illustration.

关键词

矩有界 / 广义伊藤公式 / Brown运动 / Markov调制

Key words

moment boundedness / generalized Itô / formula / Brownian motion / Markovian switching

引用本文

导出引用
王琳. Markov调制的随机泛函微分方程解的渐近性质. 数学学报, 2013, 56(5): 711-726 https://doi.org/10.12386/A2013sxxb0071
Lin WANG. Asymptotic Properties of a Class of Nonlinear Stochastic Functional Differential Equations with Markovian Switching. Acta Mathematica Sinica, Chinese Series, 2013, 56(5): 711-726 https://doi.org/10.12386/A2013sxxb0071

参考文献

[1] Bahar A., Mao X., Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 2004, 292(2): 364-380.
[2] Beckenbach E. F., Bellman R., Inequalities, Springer-Verlag, Berlin, 1961.
[3] Hu S., Huang C., Stochastic Differential Equations (in Chinese), Science Press, Beijing, 2008.
[4] Kac I. Ya., Method of Lyapunov Functions in Problems of Stability and Stabilization of Systems of Stochastics Structure (in Russian), Ekaterinburg, 1998.
[5] Kac I. Ya., Krasovskii N. N., About stability of systems with stochastics parameters (in Russian), Prikladnaya Matematika i Makhanika, 1960, 24(5): 809-823.
[6] Mao X., Asymptotic stability for stochastic differential delay equations with Markovian switching, Funct. Diff. Eqns., 2002, 9(1-2): 201-220.
[7] Mao X., Lasalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 1999, 236(2): 350-369.
[8] Mao X., Robustness of stability of stochastic differential delay equations with Markovian switching, Stab. Control Theory Appl., 2000, 3(1): 48-61.
[9] Mao X., Marion G., Renshaw E., Environmental noise supresses explosion in population dynamics, Stoc. Proc. Appl., 2002, 97: 95-110.
[10] Mao X., Matasov A., Piunovskiy A., Stochastic differential delay equations with Markovian switching, Bernoulli, 2000, 6(1): 73-90.
[11] Mao X., Matina J. R., Khasminskii-Type theorems for stochastic differential delay equations, Stoc. Anal. Appl., 2005, 23: 1045-1069.
[12] Mao X., Shaikhet L., Delay-dependent stability criteria for stochastic differential delay equations with Markovian switching, Stab. Control Theory Appl., 2000, 3(2): 87-101.
[13] Mao X., Stochastic Differential Equations and Applications, Horwood Publishing Series in Mathematics & Applications, Horwood, 1997.
[14] Mao X., Yuan C., Stochastic Differential Equations With Markovian Switching, Imperial College Press, London, 2006.
[15] Shaikhet L., Stability of stochastic hereditary systems with Markov switching, Theory of Stoc. Proc., 1996, 2(18): 180-184.
[16] Shen Y., Luo Q., Mao X., The improved LaSalle theorems for stochastic functional differential equations, J. Math. Anal. Appl., 2006, 318(1): 134-154.
[17] Skorokhod A. V., Asymptotic Methods in the Theory of Stochastic Differential Equations, American Mathematical Society, New York, 1989.
[18] Yamada T., Watanabe S., On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 1971, 11: 155-167.
[19] Yuan C., Glover W., Approximate solutions of stochastic differential delay equations with Markovian switching, J. Computer Appl. Math., 2006, 194(2): 207-226.
[20] Yuan C., Mao X., Robust stability and controllability of stochastic differential delay equations with Markovian switching, Automatica, 2004, 40(3): 343-354.
[21] Yuan C., Zou J., Mao X., Stability in distribution of stochastic differential delay equations with Markovian switching, Syst. Control Lett., 2003, 50(3): 195-207.

基金

国家自然科学基金资助项目(11201083); 广东工业大学博士启动基金资助项目(093054)

PDF(590 KB)

184

Accesses

0

Citation

Detail

段落导航
相关文章

/