多维带跳倒向随机微分方程比较定理

朱学红

数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 777-786.

PDF(478 KB)
PDF(478 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 777-786. DOI: 10.12386/A2013sxxb0076
论文

多维带跳倒向随机微分方程比较定理

    朱学红
作者信息 +

The Comparison Theorem for Multidimensional BSDEs with Jumps

    Xue Hong ZHU
Author information +
文章历史 +

摘要

研究了高维及矩阵值带跳倒向随机微分方程解的比较定理问题.利用倒向随机生存性质的相关理论,将比较定理转化为一个特定闭凸集上的生存性质问题,并得到了比较定理成立的一个充分必要条件.

Abstract

We study the comparison theorem for multidimensional backward stochastic differential equations (BSDEs in short) with jumps and for matrix-valued BSDEs with jumps. Applying the backward stochastic viability property (BSVP in short) with jumps, we transform the comparison theorem to a viability problem in a closed convex set and obtain a necessary and sufficient condition under which the comparison theorem holds true.

关键词

生存性质 / 倒向随机微分方程 / 比较定理

Key words

viability property / BSDE / comparison theorem

引用本文

导出引用
朱学红. 多维带跳倒向随机微分方程比较定理. 数学学报, 2013, 56(5): 777-786 https://doi.org/10.12386/A2013sxxb0076
Xue Hong ZHU. The Comparison Theorem for Multidimensional BSDEs with Jumps. Acta Mathematica Sinica, Chinese Series, 2013, 56(5): 777-786 https://doi.org/10.12386/A2013sxxb0076

参考文献

[1] Alexandrov A. D., The existence almost everywhere of the second differential of a convex function and some associated properties of convex surfaces (in Russian), Ucenye Zapiski Leningrad. Gos. Univ. Ser. Math., 1939, 37(6): 3-35.
[2] Barles G., Buckdahn R., Pardoux E., BSDE's and integral-partial differential equations, Stochastics, 1997, 60: 57-83.
[3] Coquet F., Hu Y., Mémin J., et al., A general converse comparison theorem for backward stochastic differential equations, C. R. Acad. Sci. Paris, 2002, 333(1): 577-581.
[4] El Karoui N., Peng S., Quenez M. C., Backward stochastic differential equation in finance, Math. Finance, 1997, 7: 1-71.
[5] Hu Y., Peng S., On the comparison theorem for multidimensional BSDEs, C. R. Math. Acad. Sci. Paris, 2006, 343(2): 135-140.
[6] Pardoux E., Peng S., Backward stochastic differential equations and quasilinear parabolic partial differential equations, Lecture Notes in Control and Inform. Sci., 1992, 176: 200-217.
[7] Peng S., A generalized dynamic programming principle and Hamilton-Jacobi-Bellmen equation, Stochastics Stochastics Rep., 1992, 38: 119-134.
[8] Royer M., Backward stochastic differential equations with jumps and related non-linear expectation, Stochastic Processes and their Applications, 2006, 116: 1358-1376.
[9] Wu Z., Fully coupled FBSDE with Brownian motion and Poisson process in stopping time duration, J. Aust. Math. Soc., 2003, 74: 249-266.
[10] Zhu X., Backward stochastic viability property with jumps and applications to the comparison theorem for multidimensional BSDEs with jumps, arxiv: 1006.1453v1 [math.PR].

基金

国家自然科学基金资助项目(11101209)

PDF(478 KB)

237

Accesses

0

Citation

Detail

段落导航
相关文章

/