研究了高维及矩阵值带跳倒向随机微分方程解的比较定理问题.利用倒向随机生存性质的相关理论,将比较定理转化为一个特定闭凸集上的生存性质问题,并得到了比较定理成立的一个充分必要条件.
Abstract
We study the comparison theorem for multidimensional backward stochastic differential equations (BSDEs in short) with jumps and for matrix-valued BSDEs with jumps. Applying the backward stochastic viability property (BSVP in short) with jumps, we transform the comparison theorem to a viability problem in a closed convex set and obtain a necessary and sufficient condition under which the comparison theorem holds true.
关键词
生存性质 /
倒向随机微分方程 /
比较定理
{{custom_keyword}} /
Key words
viability property /
BSDE /
comparison theorem
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Alexandrov A. D., The existence almost everywhere of the second differential of a convex function and some associated properties of convex surfaces (in Russian), Ucenye Zapiski Leningrad. Gos. Univ. Ser. Math., 1939, 37(6): 3-35.
[2] Barles G., Buckdahn R., Pardoux E., BSDE's and integral-partial differential equations, Stochastics, 1997, 60: 57-83.
[3] Coquet F., Hu Y., Mémin J., et al., A general converse comparison theorem for backward stochastic differential equations, C. R. Acad. Sci. Paris, 2002, 333(1): 577-581.
[4] El Karoui N., Peng S., Quenez M. C., Backward stochastic differential equation in finance, Math. Finance, 1997, 7: 1-71.
[5] Hu Y., Peng S., On the comparison theorem for multidimensional BSDEs, C. R. Math. Acad. Sci. Paris, 2006, 343(2): 135-140.
[6] Pardoux E., Peng S., Backward stochastic differential equations and quasilinear parabolic partial differential equations, Lecture Notes in Control and Inform. Sci., 1992, 176: 200-217.
[7] Peng S., A generalized dynamic programming principle and Hamilton-Jacobi-Bellmen equation, Stochastics Stochastics Rep., 1992, 38: 119-134.
[8] Royer M., Backward stochastic differential equations with jumps and related non-linear expectation, Stochastic Processes and their Applications, 2006, 116: 1358-1376.
[9] Wu Z., Fully coupled FBSDE with Brownian motion and Poisson process in stopping time duration, J. Aust. Math. Soc., 2003, 74: 249-266.
[10] Zhu X., Backward stochastic viability property with jumps and applications to the comparison theorem for multidimensional BSDEs with jumps, arxiv: 1006.1453v1 [math.PR].
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}