K-g-框架与子空间对偶g框架

周燕, 朱玉灿

数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 799-806.

PDF(424 KB)
PDF(424 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (5) : 799-806. DOI: 10.12386/A2013sxxb0078
论文

K-g-框架与子空间对偶g框架

    周燕, 朱玉灿
作者信息 +

K-g-Frames and Dual g-Frames for Closed Subspaces

    Yan ZHOU, Yu Can ZHU
Author information +
文章历史 +

摘要

在Hilbert空间中定义K-g-框架,探讨K-g-框架与, g-框架的一些本质差别.利用特殊闭子空间的对偶,g-框架来刻画 K-g-框架,给出构造特殊闭子空间对偶,g-框架的一种方法,并介绍相关的K-g-框架的一些性质.

Abstract

We introduce the concept of K-g-frames in Hilbert spaces and study the essential distinctions between K-g-frames and g-frames. Then we characterize K-g frames by using dual g-frames of special closed subspaces and give a way to construct dual g-frames for special closed subspaces. Finally, we study some properties of K-g frames.

关键词

K-框架 / K-g-框架 / 对偶

Key words

K-frames / K-g-frames / duality

引用本文

导出引用
周燕, 朱玉灿. K-g-框架与子空间对偶g框架. 数学学报, 2013, 56(5): 799-806 https://doi.org/10.12386/A2013sxxb0078
Yan ZHOU, Yu Can ZHU. K-g-Frames and Dual g-Frames for Closed Subspaces. Acta Mathematica Sinica, Chinese Series, 2013, 56(5): 799-806 https://doi.org/10.12386/A2013sxxb0078

参考文献

[1] Benedetto J., Powell A., Yilmaz O., Sigma-delta quantization and finite frames, IEEE Trans. Inf. Theory, 2006, 52: 1990-2005.
[2] Candés E. J., Donoho D. L., New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities, Comm. Pure Appl. Math., 2004, 56: 216-266.
[3] Cao H. X., Li L., Chen Q. J., Ji G. X., (p, Y )-operator frames for a Banach space, J. Math. Anal. Appl., 2008, 347: 583-591.
[4] Christensen O., Goh S. S., Pairs of oblique duals in spaces of periodic functions, Adv. Comput. Math., 2010 32: 353-379.
[5] Douglas R. G., On majorization factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 1966, 17(2): 413-415.
[6] Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72: 341-366.
[7] Găvruta P., Frames for operators, Appl. Comput. Harmon. Anal., 2012, 32: 139-144.
[8] Găvruta P., On the duality of fusion frames, J. Math. Anal. Appl., 2007, 333(2): 871-879.
[9] Guo Z. H., Cao H. X., Yin J. C., Stability of (p, Y )-operator frames, Journal of Mathematical Research Exposition, 2011, 31(3): 535-544.
[10] Heath R. W., Paulraj A. J., Linear dispersion codes for MIMO systems based on frame theory, IEEE Trans. Signal. Process, 2002, 50: 2429-2441.
[11] Li J. Z., Zhu Y. C., g-Riesz frames in Hilbert spaces, Scientia Sinica Mathematica, 2011, 41(1): 53-68 (in Chinese).
[12] Lopez J., Han D., Optimal dual frames for erasures, Linear Algebra Appl., 2010, 432: 471-482.
[13] Mallat S., A Wavelet Tour of Signal Processing, Second Edition, Academic Press, San Diego, 2000.
[14] Pedro G. M., Mariano A. R., Demetrio S., Duality in reconstruction systems, Linear Algebra Appl., 2012, 436: 447-464.
[15] Sun W. C., g-frames and g-Riesz bases, J. Math. Anal. Appl., 2006, 322(1): 437-452.
[16] Yu B. Y., Su Z. B., Construction of dual g-frames for closed subspaces, Int. J. Wavelets Multiresolut. Inf. Process, 2011, 9(6): 947-964.
[17] Zang L. L., Sun W. C., Invertible sequences of bounded linear operators, Acta Mathematica Scientia, 2011, 31B(5): 1939-1944.
[18] Zhu Y. C., Characterizations of g-frames and g-Riesz bases in Hilbert spaces, Acta Mathematica Sinica, English Series, 2008, 24(10): 1727-1736.

基金

国家自然科学数学天元基金资助项目(11226099);福建省自然科学基金(2012J01005)资助项目;福州大学科技发展基金(2012-XY-21, 2012-XQ-29)及福州大学科研启动基金(022410)资助项目

PDF(424 KB)

Accesses

Citation

Detail

段落导航
相关文章

/