分数次积分算子的交换子在加权Morrey空间上的一些估计

王华

数学学报 ›› 2013, Vol. 56 ›› Issue (6) : 889-906.

PDF(545 KB)
PDF(545 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (6) : 889-906. DOI: 10.12386/A2013sxxb0085
论文

分数次积分算子的交换子在加权Morrey空间上的一些估计

    王华
作者信息 +

Some Estimates for Commutators of Fractional Integral Operators on Weighted Morrey Spaces

    Hua WANG
Author information +
文章历史 +

摘要

设 0<α<n, Iα是一个分数次积分算子. 本文将采用统一的 Sharp极大函数估计的方法来证明 当权函数 w 满足一定条件时, 交换子[b,Iα] 在 加权 Morrey 空间 Lp,k(w) 上的有界性质,其中符号 b 属于加权 BMO 空间、Lipschitz 空间和加权Lipschitz 空间.

Abstract

Let 0 < α < n and Iα be the fractional integral operator. In this paper, we will use a unified approach to show the boundedness properties of commutators [b, Iα] on the weighted Morrey spaces Lp,κ(w) under appropriate conditions on the weight w, where the symbol b belongs to weighted BMO or Lipschitz space or weighted Lipschitz space.

关键词

分数次积分算子 / 加权 Morrey 空间 / 交换子

Key words

fractional integral operators / weighted Morrey spaces / commutators

引用本文

导出引用
王华. 分数次积分算子的交换子在加权Morrey空间上的一些估计. 数学学报, 2013, 56(6): 889-906 https://doi.org/10.12386/A2013sxxb0085
Hua WANG. Some Estimates for Commutators of Fractional Integral Operators on Weighted Morrey Spaces. Acta Mathematica Sinica, Chinese Series, 2013, 56(6): 889-906 https://doi.org/10.12386/A2013sxxb0085

参考文献

[1] Adams D. R., A note on Riesz potentials, Duke Math. J., 1975, 42: 765-778.

[2] Chanillo S., A note on commutators, Indiana Univ. Math. J., 1982, 31: 7-16.

[3] Chiarenza F., Frasca M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. Appl., 1987, 7: 273-279.

[4] Di Fazio G., Palagachev D. K., Ragusa M. A., Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal., 1999, 166: 179-196.

[5] Di Fazio G., Ragusa M. A., Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 1993, 112: 241-256.

[6] Fan D. S., Lu S. Z., Yang D. C., Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients, Georgian Math. J., 1998, 5: 425-440.

[7] Garcia-Cuerva J., Weighted Hp spaces, Dissertations Math., 1979, 162: 1-63.

[8] Garcia-Cuerva J., Rubio de Francia J. L., Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.

[9] Gundy R. F., Wheeden R. L., Weighted integral inequalities for nontangential maximal function, Lusin area integral, and Walsh-Paley series, Studia Math., 1974, 49: 107-124.

[10] Hu B., Gu J. J., Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz functions, J. Math. Anal. Appl., 2008, 340: 598-605.

[11] Iida T., Komori Y., Sato E., The Adams inequality on weighted Morrey spaces, Tokyo J. Math., 2011, 34: 535-545.

[12] Johnson R., Neugebauer C. J., Change of variable results for Ap and reverse Hölder RHr classes, Trans. Amer. Math. Soc., 1991, 328: 639-666.

[13] Komori Y., Shirai S., Weighted Morrey spaces and a singular integral operator, Math. Nachr, 2009, 282: 219-231.

[14] Morrey C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 1938, 43: 126-166.

[15] Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165: 207-226.

[16] Muckenhoupt B., Wheeden R. L., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 1974, 192: 261-274.

[17] Paluszyñski M., Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 1995, 44: 1-17.

[18] Peetre J., On the theory of Lp,λ spaces, J. Funct. Anal., 1969, 4: 71-87.

[19] Pérez C., Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 1995, 128: 163-185.

[20] Segovia C., Torrea J. L., Weighted inequalities for commutators of fractional and singular integral, Publ. Mat., 1991, 35: 209-235.

[21] Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.

[22] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.

[23] Torchinsky A., Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.

[24] Wang H., Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces, Acta Mathematica Sinica, Chinese Series, 2013, 56(2): 175-186.

[25] Wang H., Intrinsic square functions on the weighted Morrey spaces, J. Math. Anal. Appl., 2012, 396: 302-314.

[26] Wang H., Some estimates for commutators of Calderón-Zygmund operators on the weighted Morrey spaces, Sci. Sin. Math., 2012, 42(1): 31-45.

[27] Wang H., The boundedness of some operators with rough kernel on the weighted Morrey spaces, Acta Mathematica Sinica, Chinese Series, 2012, 55(4): 589-600.

[28] Wang H., Liu H. P., Some estimates for Bochner-Riesz operators on the weighted Morrey spaces, Acta Mathematica Sinica, Chinese Series, 2012, 55(3): 551-560.
PDF(545 KB)

Accesses

Citation

Detail

段落导航
相关文章

/