设
p 为奇素数,
f(x)∈F
p[
x].设
a 与
p 互素, a 表示
a 关于模
p 的逆, 即1≤ a≤
p-1 且
aa= 1 mod
p.定义二进制数列
Ep-1=(
e1,...,
ep-1),其中
以及
Rp(
n) 表示
n 关于模
p 的最小非负剩余.本文利用解析数论的方法, 研究了
Ep-1 的碰撞与雪崩效应.
Abstract
Assume that p is an odd prime, and f(x) ∈ Fp[x]. For (a, p) = 1, denote the multiplicative inverse of a by a with aa ≡ 1 mod p and 1 ≤ a ≤ p - 1. Let Ep-1 = {e1,...,ep-1} be defined by
, where Rp(n) denotes the least non-negative residue of n modulo p. In this paper we study the collision and avalanche effect of Ep-1 by using the methods in analytic number theory.
关键词
二进制数列 /
碰撞 /
雪崩效应
{{custom_keyword}} /
Key words
binary sequence /
collision /
avalanche effect
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Cassaigne J., Mauduit C., Sárközy A., On finite pseudorandom binary sequencs Ⅶ: the measures of pseudorandomness, Acta Arith., 2002, 103(2): 97-108.
[2] Goubin L., Mauduit C., Sárközy A., Construction of large families of pseudorandom binary sequences, J. Number Theory, 2004, 106(1): 56-69.
[3] Liu H., Gowers uniformity norm and pseudorandom measures of the pseudorandom binary sequences, Int. J. Number Theory, 2011, 7(5): 1279-1302.
[4] Mauduit C., Rivat J., Sárközy A., Construction of pseudorandom binary sequences using additive characters, Monatsh. Math., 2004, 141(3): 197-208.
[5] Mauduit C., Sárközy A., On finite pseudorandom binary sequences I: measure of pseudorandomness, the Legendre symbol, Acta Arith., 1997, 82(4): 365-377.
[6] Menezes A. J., van Oorschot P. C., Vanstone S. A., Handbook of Applied Cryptography, CRC Press, Boca Raton, 1996.
[7] Moreno C. J., Moreno O., Exponential sums and Goppa codes: I, Proc. Amer. Math. Soc., 1991, 111(2): 523-531.
[8] Tóth V., Collision and avalanche effect in families of pseudorandom binary sequences, Period. Math. Hung., 2007, 55(2): 185-196.
[9] Tóth V., The study of collision and avalanche effect in a family of pseudorandom binary sequences, Period. Math. Hung., 2009, 59(1): 1-8.
[10] Weil A., Sur les Courbes Algébriques et les Variétés qui s'en Déduisent, Act. Sci. Ind., Vol. 1041, Hermann, Paris, 1948.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}