环面上自映射的点态原像熵的可加性

黄保军

数学学报 ›› 2013, Vol. 56 ›› Issue (6) : 915-922.

PDF(473 KB)
PDF(473 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (6) : 915-922. DOI: 10.12386/A2013sxxb0087
论文

环面上自映射的点态原像熵的可加性

    黄保军
作者信息 +

The Additivity of Pointwise Preimage Entropy for Selfmaps on Torus

    Bao Jun HUANG
Author information +
文章历史 +

摘要

与拓扑熵一样,紧度量空间上连续自映射的点态原像熵(pointwise preimage entropy),是动力系统的不变量, 但它的性质并不与其完全一致,例如映射笛卡尔积的点态原像熵的可加性等.本文给出环面上连续自映射满足笛卡尔积的点态原像熵的可加性的条件,并借此计算环面上一类连续自映射的点态原像熵.

Abstract

Pointwise preimage entropy is similar to topological entropy but, in general, their properties are not completely coincident such as additivity under Cartesian product. In this paper, we firstly give the conditions to the pointwise preimage entropy of the maps on tori satisfing additivity under Cartesian product. Then we will compute the pointwise preimage entropies of a kind of maps on tori.

关键词

点态原像熵 / 映射的笛卡尔积 / 可加性 / 线性映射

Key words

pointwise preimage entropy / Cartesian product of the mapping / additivity / linear map

引用本文

导出引用
黄保军. 环面上自映射的点态原像熵的可加性. 数学学报, 2013, 56(6): 915-922 https://doi.org/10.12386/A2013sxxb0087
Bao Jun HUANG. The Additivity of Pointwise Preimage Entropy for Selfmaps on Torus. Acta Mathematica Sinica, Chinese Series, 2013, 56(6): 915-922 https://doi.org/10.12386/A2013sxxb0087

参考文献

[1] Brooks R., Odenthal C., Nielsen numbers for roots of maps of aspherical manifolds, Pacific Journal of Mathematics, 1995, 170: 405-420.

[2] Corloy H. W., An existence result for maximizations with respect to cones, Journal of Optimization Theory and Applications, 1980, 31(2): 277-281.

[3] Hewitt E., Stromberg K. R., Real and Abstract Analysis, Springer-Verlag, Berlin, Heidelberg, 1965.

[4] Huang B. J., Estimation and computation of a kind of point entropy (in Chinese), Advances in Mathematics, 2005, 34(3): 338-342.

[5] Hurley M., On topological entropy of maps, Ergodic Theory and Dynamical Systems, 1995, 15: 557-568.

[6] Kiang T., The Theory of Fixed Point Classes, Springer-Verlag, New York, 1989.

[7] Mihailescu E., Urbañski M., Inverse topological pressure with applications to holomorphic dynamics of several complex variables, Communications in Contemporary Mathematics, 2004, 6(4): 653-679.

[8] Nitecki Z., Przytycki F., Preimage entropy for mappings, International Journal of Bifurcation and Chaos, 1999, 9(9): 1815-1843.

[9] Roman S., Advanced Linear Algebra, Springer-Verlag, Berlin, 2007.

[10] Walters P., An Introduction to Ergodic Theory, Springer-Verlag, Berlin, 1982.

基金

安徽省教育厅自然科学基金资助项目(KJ2009A050Z)

PDF(473 KB)

Accesses

Citation

Detail

段落导航
相关文章

/