与拓扑熵一样,紧度量空间上连续自映射的点态原像熵(pointwise preimage entropy),是动力系统的不变量, 但它的性质并不与其完全一致,例如映射笛卡尔积的点态原像熵的可加性等.本文给出环面上连续自映射满足笛卡尔积的点态原像熵的可加性的条件,并借此计算环面上一类连续自映射的点态原像熵.
Abstract
Pointwise preimage entropy is similar to topological entropy but, in general, their properties are not completely coincident such as additivity under Cartesian product. In this paper, we firstly give the conditions to the pointwise preimage entropy of the maps on tori satisfing additivity under Cartesian product. Then we will compute the pointwise preimage entropies of a kind of maps on tori.
关键词
点态原像熵 /
映射的笛卡尔积 /
可加性 /
线性映射
{{custom_keyword}} /
Key words
pointwise preimage entropy /
Cartesian product of the mapping /
additivity /
linear map
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Brooks R., Odenthal C., Nielsen numbers for roots of maps of aspherical manifolds, Pacific Journal of Mathematics, 1995, 170: 405-420.
[2] Corloy H. W., An existence result for maximizations with respect to cones, Journal of Optimization Theory and Applications, 1980, 31(2): 277-281.
[3] Hewitt E., Stromberg K. R., Real and Abstract Analysis, Springer-Verlag, Berlin, Heidelberg, 1965.
[4] Huang B. J., Estimation and computation of a kind of point entropy (in Chinese), Advances in Mathematics, 2005, 34(3): 338-342.
[5] Hurley M., On topological entropy of maps, Ergodic Theory and Dynamical Systems, 1995, 15: 557-568.
[6] Kiang T., The Theory of Fixed Point Classes, Springer-Verlag, New York, 1989.
[7] Mihailescu E., Urbañski M., Inverse topological pressure with applications to holomorphic dynamics of several complex variables, Communications in Contemporary Mathematics, 2004, 6(4): 653-679.
[8] Nitecki Z., Przytycki F., Preimage entropy for mappings, International Journal of Bifurcation and Chaos, 1999, 9(9): 1815-1843.
[9] Roman S., Advanced Linear Algebra, Springer-Verlag, Berlin, 2007.
[10] Walters P., An Introduction to Ergodic Theory, Springer-Verlag, Berlin, 1982.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
安徽省教育厅自然科学基金资助项目(KJ2009A050Z)
{{custom_fund}}