1. Department of Mathematics, Changshu Institute of Technology, Changshu 215500, P. R. China;
2. Institute of Mathematics, School of Mathematics, Nanjng Normal University, Nanjing 210046, P. R. China
Let a and b be holomorphic functions on a plane domain D such that a has no zero, b is not zero identically, and a does not take the value 0 at the zeros of b. Let F = {f} be a family of meromorphic functions on D, all of whose zeros are multiple, such that f = a ⇔ f = b. Then the family F is normal on D. Examples are given to show the necessity of the conditions.
Xiao Yi LIU, Chun Nuan CHENG.
Normal Families and Shared Functions. Acta Mathematica Sinica, Chinese Series, 2013, 56(6): 941-950 https://doi.org/10.12386/A2013sxxb0090
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bergweiler W., Pang X. C., On the derivative of meromorphic functions with multiple zeros, J. Math. Anal. Appl., 2003, 278: 285-292.
[2] Chen H. H., Gu Y. X., Improvement of Marty's criterion and its applications, Sci. China, Ser. A, 1993, 36: 674-681.
[3] Fang M. L., Zalcman L., Normal families and shared values Ⅲ, Comput. Methods Funct., 2002, 1: 385-395.
[4] Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
[5] Lei C. L., Yang D. G., Fang M. L., Normal families and shared values of Meromorphic functions, J. Math. Anal. Appl., 2010, 364: 143-150.
[6] Pang X. C., Zalcman L., Normal families and shared values, Bull. London Math. Soc., 2000, 32: 325-331.
[7] Schiff J. L., Normal Families, Springer-Verlag, New York, 1993.
[8] Schwick W., Sharing values and normaltity, Arch. Math., 1992, 59: 50-54.
[9] Wang Y. F., Fang M. L., Picard values and normal families of meromorphic functions with multiple zeros, Acta Mathematica Sinica, New Series, 1998, 14(1): 17-26.
[10] Yang L., Value Distribution Theory, Spring-Verlag, Berlin, 1993.