一类五次扰动Hamiltonian系统的Abel积分零点个数

孙宪波

数学学报 ›› 2013, Vol. 56 ›› Issue (6) : 981-992.

PDF(603 KB)
PDF(603 KB)
数学学报 ›› 2013, Vol. 56 ›› Issue (6) : 981-992. DOI: 10.12386/A2013sxxb0095
论文

一类五次扰动Hamiltonian系统的Abel积分零点个数

    孙宪波
作者信息 +

The Number of Zeros of Abelian Integral for Some Perturbed Hamiltonian System of Degree 5

    Xian Bo SUN
Author information +
文章历史 +

摘要

研究一类五次扰动Hamiltonian系统的Abel积分零点个数上界.证明所研究的Abel积分的生成元构成精度为1的Chebeyshev系统,得到Abel积分零点个数上界是4 (考虑零点重数). 并指出前人文献中关于Abel积分零点个数上界的研究存在的错误, 给出了最新结果.

Abstract

We study the number of zeros of the Abelian integral for some perturbed Hamiltonian system of degree 5. We prove the generating elements of the Abelian integral form a Chebeyshev system of accuracy of 1, therefore the number of zeros of the Abelian integral is 4. Last, we show a wrong result given in some previous work about the number of zeros for this Abelian integral, therefore the result we give is very new.

关键词

Abel积分 / Chebeyshev系统 / 弱化Hilbert 16th问题

Key words

Abelian integral / Chebeyshev system / weak Hilbert’s 16th problem

引用本文

导出引用
孙宪波. 一类五次扰动Hamiltonian系统的Abel积分零点个数. 数学学报, 2013, 56(6): 981-992 https://doi.org/10.12386/A2013sxxb0095
Xian Bo SUN. The Number of Zeros of Abelian Integral for Some Perturbed Hamiltonian System of Degree 5. Acta Mathematica Sinica, Chinese Series, 2013, 56(6): 981-992 https://doi.org/10.12386/A2013sxxb0095

参考文献

[1] Arnold V. I., Arnold's problems, Fazis, Moscow 2000, English Transl., Springer-Verlag, Berlin, 2004.

[2] Arnold V. I., Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields, Funct. Anal. Appl., 1977, 11: 85-92.

[3] Arnold V. I., Ten problems, Adv. Soviet Math., 1990, 1: 1-8.

[4] Asheghi R., Zangeneh H. R. Z., Bifurcations of limit cycles from quintic Hamiltonian systems with an eyefigure loop (Ⅰ), Nonlinear Analysis, 2008, 68: 2957-2976.

[5] Asheghi R., Zangeneh H. R. Z., Bifurcations of limit cycles from quintic Hamiltonian systems with an eyefigure loop (Ⅱ), Nonlinear Analysis, 2008, 69: 4143-4162

[6] Asheghi R., Zangeneh H. R. Z., Atabaigi A., On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems, Nonlinear Analysis, 2012, 75: 574-587.

[7] Chen Y., The Lecture on Computer Algebra (in Chinese), Higher Education Press, Beijing, 2009.

[8] Christopher C., Li C., Limit Cycles of Differential Equations, CRM Barcelona, Birkhäuser Basel, 2007.

[9] Dumortier F., Li C., Perturbations from an elliptic Hamiltonian of degree four: (I) Saddle loop and two saddle cycle, J. Differential Equations, 2001, 176: 114-157.

[10] Dumortier F., Li C., Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ) Cuspidal loop, J. Differential Equations, 2001, 175: 209-243.

[11] Dumortier F., Li C., Perturbation from an elliptic Hamiltonian of degree four: (Ⅲ) Global center, J. Differential Equations, 2003, 188: 473-511.

[12] Dumortier F., Li C., Perturbations from an elliptic Hamiltonian of degree four: (IV) Figure eight-loop, J. Differential Equations, 2003, 88: 512-514.

[13] Grau M., Mañosas F., Villadelprat J., A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 2011, 363: 109-129.

[14] Huppert D., Blackburn N., Finite Groups Ⅱ, Springer-Verlag, New York, 1982.

[15] Li C., Abelian integrals and limit cycles, Qual. Theory Dyn. Syst., 2012, 11: 111-128.

[16] Li C., Li W., Weak Hilbert's 16th problem and the relative research (in Chinese), Advances in Mathematics, 2010, 39(5): 513-526.

[17] Li C., Marde P., Roussarieb R., Perturbations of symmetric elliptic Hamiltonians of degree four, J. Differential Equations, 2006, 231: 78-91.

[18] Li C., Zhang Z. F., A criterion for determining the monotonicity of the ratio of two abelian integrals, J. Differential Equations, 1996, 124: 407-424.

[19] Li J., Hilbert's 16th problem and bifurcations of planar vector fields, Inter. J. Bifur. Chaos, 2003, 13: 47-106.

[20] Lorenzini D., Tucker T. J., The equations and the method of Chabauty-Coleman, Invent. Math., 2002, 148(1): 1-46.

[21] Mañosas F., Villadelprat J., Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 2011, 251: 1656-1669.

[22] Pontryagin L., On dynamical systems close to hamiltonian ones, Zh. Exp. Theor. Phys., 1934, 4, 234-238.

[23] Wang J., Estimate of the number of zeros of Abelian integrals for a perturbation of hyperelliptic Hamiltonian system with nilpotent center, Chaos, Solitons, Fractals, 2012, 45: 1140-1146.

[24] Wang D., Mou Q., Li X., et al., Polynomial Algebra (in Chinese), Higher Education Press, Beijing, 2011.

[25] Wang J., Xiao D., On the number of limit cycles in small perturbations of a class of hyperelliptic Hamiltonian systems with one nilpotent saddle, J. Differential Equations, 2011, 250: 2227-2243.

[26] Yakovenko S., Qualitative Theory of Ordinary Differential Equations and Tangential Hilbert 16th Problem, CRM Monograph Series 24 (Edited by D. Schlomiuk), Amer. Math. Soc. Providence, RI, 2005.

[27] Zhang T. H., Tadaé M. O., Tian Y. C., On the zeros of the Abelian integrals for a class of Liénard systems, Physics Letters A, 2006, 358: 262-274.

[28] Zhang Z., Li C., Zheng M., et al., The Basic Bifurcation Theory of Vector Field (in Chinese), Higher Education Press, Beijing, 1997.

基金

国家自然科学基金资助项目(11261013);广西财经学院校级科研项目(2012C08);广西高校科研项目(2013YB216)

PDF(603 KB)

269

Accesses

0

Citation

Detail

段落导航
相关文章

/