由Dvoretzky随机覆盖引起的集合的Hausdorff维数

唐军民

数学学报 ›› 2014, Vol. 57 ›› Issue (1) : 51-70.

PDF(551 KB)
PDF(551 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (1) : 51-70. DOI: 10.12386/A2014sxxb0006
论文

由Dvoretzky随机覆盖引起的集合的Hausdorff维数

    唐军民
作者信息 +

Hausdorff Dimension of Sets Arising from Dvoretzky Random Covering

    Jun Min TANG
Author information +
文章历史 +

摘要

考虑了单位圆T=R/Z上的随机区间In(ω)=ωn+(-ln/2,ln/2),(mod 1),其中{ln}n≥1为一列单调下降并趋于0的正实数,{ωn}n≥1为T上的一列独立同分布且具有Gibbs分布测度的随机变量. 借助于重分形分析中的工具,估计了被随机区间序列{In(ω)}有限次覆盖以及无穷多次覆盖的集合的Hausdorff维数.

Abstract

We consider the random intervals In(ω)=ωn+(-ln/2,ln/2) (mod 1), where {ln}n≥1 is a sequence of positive real numbers which is decreasing to zero and {ωn}n≥1 is an i.i.d. sequence with Gibbs distribution measure on the circle T= R/Z. Using the tools from multi-fractal analysis, we estimate the Hausdorff dimension of sets which are covered finitely or infinitely many times by {In(ω)}.

关键词

随机覆盖 / Gibbs测度 / 局部维数 / 首中时

Key words

random covering / Gibbs measure / local dimension / hitting time

引用本文

导出引用
唐军民. 由Dvoretzky随机覆盖引起的集合的Hausdorff维数. 数学学报, 2014, 57(1): 51-70 https://doi.org/10.12386/A2014sxxb0006
Jun Min TANG. Hausdorff Dimension of Sets Arising from Dvoretzky Random Covering. Acta Mathematica Sinica, Chinese Series, 2014, 57(1): 51-70 https://doi.org/10.12386/A2014sxxb0006

参考文献

[1] Barral J., Fan A. H., Covering numbers of different points in Dvoretzky covering, Bull. Sci. Math., 2005, 129: 275-317.
[2] Barreira L., Saussol B., Schmeling J., Higher-dimensional multifractal analysis, J. Math. Pures Appl., 2002, 81: 67-91.
[3] Billard P., Séries de Fourier aléatoirement bornées, continues, uniformément convergents, Ann. Scient. Ec. Norm. Sup., 1965, 82: 131-179.
[4] Bowen R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, New York, 1975.
[5] Chazottes J. R., Dimensions and waiting times for Gibbs measures, Journal of Statistical Physics, 2000, 98: 305-320.
[6] Dai X. P., Existence of full-Hausdorff-dimension invariant measures of dynamical systems with dimension metrics, Arch. Math., 2005, 85: 470-480.
[7] Dvoretzky A., On covering a circle by randomly placed arcs, Pro. Nat. Acad. Sci. USA, 1956, 42: 199-203.
[8] Fan A. H., How many intervals cover a point in the Dvoretzky covering? Israel J. Math., 2002, 131: 157-184.
[9] Fan A. H., Feng D. J., Wu J., Recurrence, dimension and entropy, J. London Math. Soc., 2001, 64: 229-244.
[10] Fan A. H., Kahane J. P., Rareté des intervalles recouvrant un point dans un recouvrement aléatoire, Ann. Inst. Henri Poincaré, 1993, 29: 453-466.
[11] Fan A. H., Schmeling J., Troubetzkoy S., Dynamical Diophantine approximations, Submitted, Available at http://arxiv.org/abs/0705.4203
[12] Fan A. H., Wu J., On the covering by small random intervals, Ann. IHP, 2004, 40: 125-131.
[13] Jonasson J., Steif J., Dynamical models for circle covering: Brownian motion and Poisson updating, Annals of Prob., 2008, 36: 739-764.
[14] Kahane J. P., Some Random Series of Functions, Cambridge University Press, Cambridge, 1985.
[15] Kahane J. P., Sur le recouvrement d'un cercle par des arcs disposés au hasard, C. R. Acad. Sci. Paris, 1959, 248: 184-186.
[16] Mandelbrot B., On Dvoretzky coverings for the circle, Z. Wahrsch. V. Geb., 1972, 22: 158-160.
[17] Pesin Ya., Dimension Theory in Dynamical Systems, University of Chicago Press, Chicago, 1997.
[18] Ruelle D., Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 1968, 9: 267-278.
[19] Schmeling J., Entropy preservation under Markov coding, J. Stat. Phys., 2001, 104: 799-815.
[20] Shepp L., Covering the circle with random arc, Israel J. Math., 1972, 11: 328-345.
[21] Tang J. M., Covering the circle with small random intervals, J. of Math. (China), 2010, 3: 414-416.
[22] Walters P., An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

基金

国家自然科学基金资助项目(10971069)
PDF(551 KB)

458

Accesses

0

Citation

Detail

段落导航
相关文章

/