We study the existence of nodal solutions for the p-Laplacian problems with jumping nonlinearities at zero and infinity. More precisely, we show that there exists at least one nodal solution to the problems if nonlinearities crossing the Fučik spectrum.
Guo Wei DAI, Ru Yun MA.
Nodal Solutions for p-Laplacian Problems with Jumping Nonlinearities. Acta Mathematica Sinica, Chinese Series, 2014, 57(1): 189-194 https://doi.org/10.12386/A2014sxxb0019
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Alexander J. C., Antman S. S., Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rat. Mech. Anal., 1981, 76: 339-354. [2] Ambrosetti A., Prodi G., On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 1972, 93: 231-247. [3] Antman S. S., Nonlinear Problems of Elasticity, Applied Math. Sciences, 107, Springer-Verlag, New York, 1995. [4] Cantrell R. S., Multiparameter bifurcation problems and topological degree, J. Differential Equations, 1984, 52: 39-51. [5] Dai G., Ma R., Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian, J. Differential Equations, 2012, 252: 2448-2468. [6] Dambrosio W., Global bifurcation from the Fučik spectrum, Rend. Semin. Mat. Univ. Padova, 2000, 103: 261-281. [7] Dancer E. N., On the Dirichlet problem for weakly nonlinear elliptic partial differential equation, Proc. Roy. Soc. Edinburgh, 1977, 76: 283-300. [8] Dancer E. N., On the structure of solutions of non-linear eigenvalue problems, Indiana U. Math J., 1974, 23: 1069-1076. [9] Drábek P., Solvability and Bifurcations of Nonlinear Equations, in Pitman Research Notes in Mathematics, Vol. 264, Longman, Harlow, New York, 1992. [10] Fizpztrick P. M., Massabò I., Pejsachowicz J., Global several-parameter bifurcation and continuation theorems: a unified approach via completing maps, Math. Ann., 1983, 263: 61-73. [11] Fučik S., Boundary value problems with jumping nonlinearities, Casopis Pest. Mat., 1976, 101(1): 69-87. [12] Hale J. K., Bifurcation from simple eigenvalues for several paramrter families, Nonlinear Anal., 1978, 2: 491-497. [13] Ize J., Connected sets in multiparameter bifurcation, Nonlinear Anal., 1997, 30: 3763-3774. [14] Krasnosel'ski M. A., Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1965. [15] Lazer A. C., Mckenna P. J., Large amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 1990, 32: 537-578. [16] Lee Y. H., Sim I., Existence results of sign-changing solutions for singular one-dimensional p-Laplacian problems, Nonlinear Anal., 2008, 68: 1195-1209. [17] Rabinowitz P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7: 487-513. [18] Welsh S., A vector parameter global bifurcation result, Nonlinear Anal., 1995, 25: 1425-1435.