带跳跃非线性项的p-Laplacian问题的结点解

代国伟, 马如云

数学学报 ›› 2014, Vol. 57 ›› Issue (1) : 189-194.

PDF(416 KB)
PDF(416 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (1) : 189-194. DOI: 10.12386/A2014sxxb0019
论文

带跳跃非线性项的p-Laplacian问题的结点解

    代国伟, 马如云
作者信息 +

Nodal Solutions for p-Laplacian Problems with Jumping Nonlinearities

    Guo Wei DAI, Ru Yun MA
Author information +
文章历史 +

摘要

研究了带跳跃非线性项的p-Laplacian方程结点解的存在性.如果该问题的非线性项跨越其对应齐次问题的Fučik谱,我们证明了该问题至少存在一个结点解.

Abstract

We study the existence of nodal solutions for the p-Laplacian problems with jumping nonlinearities at zero and infinity. More precisely, we show that there exists at least one nodal solution to the problems if nonlinearities crossing the Fučik spectrum.

关键词

Fučik谱 / 结点解 / 跳跃非线性项

Key words

Fučik spectrum / nodal solution / jumping nonlinearity

引用本文

导出引用
代国伟, 马如云. 带跳跃非线性项的p-Laplacian问题的结点解. 数学学报, 2014, 57(1): 189-194 https://doi.org/10.12386/A2014sxxb0019
Guo Wei DAI, Ru Yun MA. Nodal Solutions for p-Laplacian Problems with Jumping Nonlinearities. Acta Mathematica Sinica, Chinese Series, 2014, 57(1): 189-194 https://doi.org/10.12386/A2014sxxb0019

参考文献

[1] Alexander J. C., Antman S. S., Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rat. Mech. Anal., 1981, 76: 339-354.
[2] Ambrosetti A., Prodi G., On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 1972, 93: 231-247.
[3] Antman S. S., Nonlinear Problems of Elasticity, Applied Math. Sciences, 107, Springer-Verlag, New York, 1995.
[4] Cantrell R. S., Multiparameter bifurcation problems and topological degree, J. Differential Equations, 1984, 52: 39-51.
[5] Dai G., Ma R., Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian, J. Differential Equations, 2012, 252: 2448-2468.
[6] Dambrosio W., Global bifurcation from the Fučik spectrum, Rend. Semin. Mat. Univ. Padova, 2000, 103: 261-281.
[7] Dancer E. N., On the Dirichlet problem for weakly nonlinear elliptic partial differential equation, Proc. Roy. Soc. Edinburgh, 1977, 76: 283-300.
[8] Dancer E. N., On the structure of solutions of non-linear eigenvalue problems, Indiana U. Math J., 1974, 23: 1069-1076.
[9] Drábek P., Solvability and Bifurcations of Nonlinear Equations, in Pitman Research Notes in Mathematics, Vol. 264, Longman, Harlow, New York, 1992.
[10] Fizpztrick P. M., Massabò I., Pejsachowicz J., Global several-parameter bifurcation and continuation theorems: a unified approach via completing maps, Math. Ann., 1983, 263: 61-73.
[11] Fučik S., Boundary value problems with jumping nonlinearities, Casopis Pest. Mat., 1976, 101(1): 69-87.
[12] Hale J. K., Bifurcation from simple eigenvalues for several paramrter families, Nonlinear Anal., 1978, 2: 491-497.
[13] Ize J., Connected sets in multiparameter bifurcation, Nonlinear Anal., 1997, 30: 3763-3774.
[14] Krasnosel'ski M. A., Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1965.
[15] Lazer A. C., Mckenna P. J., Large amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 1990, 32: 537-578.
[16] Lee Y. H., Sim I., Existence results of sign-changing solutions for singular one-dimensional p-Laplacian problems, Nonlinear Anal., 2008, 68: 1195-1209.
[17] Rabinowitz P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7: 487-513.
[18] Welsh S., A vector parameter global bifurcation result, Nonlinear Anal., 1995, 25: 1425-1435.

基金

国家自然科学基金资助项目(11261052,11061030)
PDF(416 KB)

208

Accesses

0

Citation

Detail

段落导航
相关文章

/