光滑Weyl和的分数幂均值的数值上界

王天芹, 刘华珂

数学学报 ›› 2014, Vol. 57 ›› Issue (1) : 200-208.

PDF(480 KB)
PDF(480 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (1) : 200-208. DOI: 10.12386/A2014sxxb0021
论文

光滑Weyl和的分数幂均值的数值上界

    王天芹1, 刘华珂2
作者信息 +

Numerical Upper Bounds for the Mean Values of Smooth Weyl Sums of Fractional Moments

    Tian Qin WANG1, Hua Ke LIU2
Author information +
文章历史 +

摘要

通过讨论光滑Weyl和的任意幂次均值的数值上界之间的关系,本文给出了幂次为区间[4,5]中的值时相应均值的数值上界的一些新结果.

Abstract

We discuss some relationship of the numerical upper bounds for the mean values of smooth Weyl sums of fractional moments. Some new results on the numerical upper bounds of the mean values are given when the moments are in the interval [4, 5].

关键词

允许指数 / 光滑Weyl和 / 均值 / 数值上界

Key words

permissible exponent / smooth Weyl sum / mean value / numerical upper bound

引用本文

导出引用
王天芹, 刘华珂. 光滑Weyl和的分数幂均值的数值上界. 数学学报, 2014, 57(1): 200-208 https://doi.org/10.12386/A2014sxxb0021
Tian Qin WANG, Hua Ke LIU. Numerical Upper Bounds for the Mean Values of Smooth Weyl Sums of Fractional Moments. Acta Mathematica Sinica, Chinese Series, 2014, 57(1): 200-208 https://doi.org/10.12386/A2014sxxb0021

参考文献

[1] Arkhipov G. I., Chubarikov V. N., On I. M., Vinogradov's additive problem, Mat. Zametki, 2010, 88(3): 325-339.
[2] Brudern J., Wooley T. D., The asymptotic formulae in Waring's problem for cubes, J. Reine Angew. Math., 2010, 647: 1-23.
[3] Brudern J., Wooley T. D., On Waring's problem: three cubes and a minicube, J. Nagoya Math., 2010, 200: 59-91.
[4] Daemen D., The asymptotic formula for localized solutions in Waring's problem and approximations to Weyl sums, Bull. Lond. Math. Soc., 2010, 42(1): 75-82.
[5] Elsholtz C., The number Γ(k) in Waring's problem, Acta Arith., 2008, 131(1): 43-49.
[6] Kononen K., More exact solutions to Waring's problem for finite fields, Acta Arith., 2010, 145(2): 209-212.
[7] Liu J. Y., Wooley T. D., Yu G., The quadratic Waring-Goldbach problem, J. Number Theory, 2004, 107(2): 298-321.
[8] Liu Y. R., Wooley T. D., Waring's problem in function fields, J. Reine Angew. Math., 2010, 638: 1-67.
[9] Preobrazhenski S. N., A new estimate in I. M. Vinogradov's mean value theorem, Mat. Zametki, 2011, 89(2): 285-299.
[10] Vaughan R. C., A new iterative method in Waring's problem, Acta Math., 1989, 162: 1-71.
[11] Vaughan R. C., A new iterative method inWaring's problem, II, J. London Math. Soc., 1989, 39(2): 219-230.
[12] Vaughan R. C., The Hardy-Littlewood Method, Cambidge University Press, Cambidge, 1997.
[13] Vaughan R. C., On Waring's problem for cubes, J. Reine Angew. Math., 1986, 365: 122-170.
[14] Vaughan R. C., On Waring's problem for cubes, II, J. London Math. Soc., 1989, 39(2): 205-218.
[15] Vaughan R. C., Wooley T. D., Further improvements in Waring's problem, Acta Math., 1995, 174: 147-240.
[16] Wooley T. D., Breaking classical convexity in Waring's problem: sums of cubes and quasi-diagonal behavior, Invent. Math., 1995, 122: 421-451.

基金

国家自然科学基金资助项目(11071070);河南省基础与前沿技术研究计划项目(122300410030)及省创新型科技人才队伍建设工程资助项目
PDF(480 KB)

178

Accesses

0

Citation

Detail

段落导航
相关文章

/