仿射Nappi-Witten代数Ĥ4的顶点算子代数的自同构群

王松

数学学报 ›› 2014, Vol. 57 ›› Issue (2) : 331-338.

PDF(430 KB)
PDF(430 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (2) : 331-338. DOI: 10.12386/A2014sxxb0033
论文

仿射Nappi-Witten代数Ĥ4的顶点算子代数的自同构群

    王松1,2
作者信息 +

Automorphism Groups of Vertex Operator Algebras Associated with the Affine Nappi-Witten Algebra Ĥ4

    Song WANG1,2
Author information +
文章历史 +

摘要

研究了与仿射Nappi-Witten代数Ĥ4相关的顶点算子代数的自同构群的一些基本性质,并且给出了它的完全分类.

Abstract

We study the automorphism groups of vertex operator algebras associated with Ĥ4 and give a complete description.

关键词

仿射李代数 / 顶点算子代数 / 自同构群

Key words

affine Lie algebras / vertex operator algebras / automorphism groups

引用本文

导出引用
王松. 仿射Nappi-Witten代数Ĥ4的顶点算子代数的自同构群. 数学学报, 2014, 57(2): 331-338 https://doi.org/10.12386/A2014sxxb0033
Song WANG. Automorphism Groups of Vertex Operator Algebras Associated with the Affine Nappi-Witten Algebra Ĥ4. Acta Mathematica Sinica, Chinese Series, 2014, 57(2): 331-338 https://doi.org/10.12386/A2014sxxb0033

参考文献

[1] Bao Y., Jiang C., Pei Y., Representations of affine Nappi-Witten algebras, Journal of Algebra, 2011, 342: 111-133.
[2] Belavin A., Polyakov A.M., Zamolodchikov A. B., Infinite conformal symmetries in two-dimensional quantum field theory, Nucl. Phys. B, 1984, 241: 333-380.
[3] Cheung Y., Freidel L., Savvidy K., Strings in gravimagnetic fields, Journal of High Energy Physics, 2004, 054: 1-48.
[4] Dappollonio G., Kiritsis E., String interactions in gravitational wave backgrounds, Nucl. Phys. B, 2003, 674: 80-170.
[5] Dappollonio G., Quella T., The abelian cosets of the Heisenberg group, Journal of High Energy Physics,2007, 11: 45.
[6] Dappollonio G., Quella T., The diagonal cosets of the Heisenberg group, Journal of High Energy Physics, 2008, 05: 60.
[7] Frenkel I., Lepowsky J., Meurman A., Vertex Operator Algebras and the Monster, Pure and Appl. Math.
134, Academic Press, Boston, 1988.
[8] Jiang C., Wang S., Extension of vertex operator algebra VĤ4
(l, 0), Algebra Colloquium, in press.
[9] Kac V., Infinite-Dimensional Lie Algebras, Cambridge, Cambridge University Press, UK, 1990.
[10] Kiritsis E., Kounnas C., String propagation in gravitational wave backgrounds, Phys. Lett. B, 1994, 594: 368-374.
[11] Lepowsky J., Li H., Introduction to Vertex Operator Algebras and Their Representations, Progress in Math.,Birkhäuser, Boston, 2003.
[12] Lian B., On the classification of simple vertex operator algebras, Commun. Math. Phys., 1994, 163: 307-357.
[13] Moody R. V., Pianzola A., Lie Algebras with Triangular Decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New York, 1995.
[14] Moore G., Seiberg N., Classical and quantum conformal field theory, Commun. Math. Phys., 1989, 123:177-254.
[15] Nappi C., Witten E., Wess-Zumino-Witten model based on a nonsemisimple group, Phys. Rev. Lett, 1993,23: 3751-3753.
[16] Witten E., Non-abelian bosonization in two-dimensions, Commun. Math. Phys., 1984, 92: 455-472.

基金

国家自然科学基金资助项目(11001200);中央高校基本科研业务费专项基金资助;上海海洋大学博士科研启动基金
PDF(430 KB)

Accesses

Citation

Detail

段落导航
相关文章

/