α-stable运动驱动的OU过程的拟似然估计

方龙祥, 张新生

数学学报 ›› 2014, Vol. 57 ›› Issue (2) : 395-408.

PDF(640 KB)
PDF(640 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (2) : 395-408. DOI: 10.12386/A2014sxxb0039
论文

α-stable运动驱动的OU过程的拟似然估计

    方龙祥1, 张新生2
作者信息 +

Quasi-Likelihood Estimation for OU Processes Driven by α-Stable Motions

    Long Xiang FANG1, Xin Sheng ZHANG2
Author information +
文章历史 +

摘要

对于α-stable 运动驱动的OU过程,其转移密度函数没有明确的显式表达式,但是条件特征函数已知.本文基于离散观测样本,借助条件特征函数,研究了α-stable运动驱动的OU过程的拟似然估计,并证明了拟似然估计量的相合性和渐近有效性.模拟显示所提出的估计方法是准确和稳定的.

Abstract

For OU processes driven by α-stable motions, its transition density function has no explicit form, while the conditional characteristic function is known. In this paper, we present an quasi-likelihood estimation procedure for parameters of the discretely sampled process of OU processes driven by α-stable motions. The proposed procedure is based on the conditional characteristic function, and the quasi-likelihood estimator is proved to be consistent and asymptotically efficient under some mild conditions. Finally, Monte Carlo simulations are conducted to demonstrate the accuracy and stability of proposed estimator.

关键词

α-stable运动驱动的OU过程 / 条件特征函数 / 拟似然估计 / Fisher信息阵

Key words

OU processes driven by α-stable motions / conditional characteristic function / quasi-likelihood estimation / Fisher information matrix

引用本文

导出引用
方龙祥, 张新生. α-stable运动驱动的OU过程的拟似然估计. 数学学报, 2014, 57(2): 395-408 https://doi.org/10.12386/A2014sxxb0039
Long Xiang FANG, Xin Sheng ZHANG. Quasi-Likelihood Estimation for OU Processes Driven by α-Stable Motions. Acta Mathematica Sinica, Chinese Series, 2014, 57(2): 395-408 https://doi.org/10.12386/A2014sxxb0039

参考文献

[1] Barndorff-Nielsen O. E., Shephard N., Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics (with discussion), J. Roy. Statist. Soc. Ser. B, 2001, 63: 167-241.
[2] Benedikt M. P., Ingmar R. P., A uniform law of large numbers for dependent and heterogeneous data process, Econometrica, 1989, 57: 675-683.
[3] Brant R., Approximate likelihood and probability calculations based on transforms, Ann. Statist., 1984, 12: 989-1005.
[4] Chacko G., Viceira L. M., Spectral GMM estimation of continuous-time processes, J. Econometrics, 2003, 16: 259-292.
[5] Doukhan P., Mixing: Properties and Examples, Springer-Verlag, Berlin, 1995.
[6] Feuerverger A., An efficiency result for the empirical characteristic function in stationary time-series models, Canad. J. Statist., 1990, 18: 155-161.
[7] Feuerverger A., McDunnough P., On the efficiency of empirical characteristic function procedures, J. Roy. Statist. Soc. Ser. B, 1981, 43: 20-27.
[8] Heyde C. C., Quasi-Likelihood and Its Application: A General Approach to Optimal Parameter Estimation, Springer, New York, 1997.
[9] Hu Y., Long H., Least squares estimator for Ornstein-Uhlenbeck processes driven by α-stable motions, Stochastic Process. Appl., 2009, 119: 2465-2480.
[10] Jiang G. J., Knight J. L., Estimation of continuous-time processes via the empirical characteristic function, J. Bus. Econom. Statist., 2002, 20: 198-212.
[11] Lo A. W., Maximum likelihood estimation of generalized Itô processes with discretely sampled data, Econometric Theory, 1988, 4: 231-247.
[12] Masuda H., Simple Estimators for Non-linear Markovian Trend from Sampled data: I. Ergodic cases, MHF Preprint Series 2005-7, Kyushu University, Kyushu, 2005.
[13] Merkouris T., Transform martingale estimation functions, The Annals of Statistics, 2007, 35: 1975-2000.
[14] Pedersen A. R., A new approach to maximum-likelihood estimation for stochastic differential equations based on discrete observations, Scand. J. Statist., 1995, 22: 55-61.
[15] Santa-Clara P., Simulated Likelihood Estimation of Diffusions with an Application to the Short Term Interest Rate, PhD Dissertation, University of California, Los Angeles, 1995.
[16] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999.
[17] Shimizu Y., M-estimation for discretely observed ergodic diffusion processes with infinite jumps, Stat. Infer. Stoch. Process., 2006, 9: 179-225.
[18] Shimizu Y., Yoshida N., Estimation of parameters for diffusion processes with jumps from discrete observations, Stat. Infer. Stoch. Process., 2006, 9: 227-277.
[19] Singleton K. J., Estimation of affine asset pricing models using the empirical characteristic function, J. Econometrics, 2001, 102: 111-141.
[20] Sueishi N., Quasi-Likelihood Estimation of Stable Distributions by Method of Scoring (Working Paper), Kyoto University, Kyoto, 2005.
[21] Sun S., Zhang X., Empirical likelihood estimation of discretely sampled processes of OU type, Sci. China Ser. A, 2009, 52: 908-931.
[22] Valdivieso L., Schoutens W., Tuerlinckx F., Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type, Stat. Infer. Stoch. Process., 2009, 12: 1-19.
[23] Zhang S., Zhang X., A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by α-stable motions, Ann. Inst. Stat. Math., 2013, 65: 89-103.
[24] Zhang S., Zhang X., Sun S., Parametric estimation of discretely sampled Gamma-OU processes, Sci. China Ser. A, 2006, 49: 1231-1257.

基金

国家自然科学基金资助项目(11071045,11201003);安徽省自然科学基金(1408085MA07,1208085MA11)及高校省级重点科学研究项目(KJ2013A137)
PDF(640 KB)

263

Accesses

0

Citation

Detail

段落导航
相关文章

/