Cauchy-三次函数方程及其Hyers-Ulam稳定性

纪培胜, 魏然红, 刘荣荣

数学学报 ›› 2014, Vol. 57 ›› Issue (3) : 559-568.

PDF(411 KB)
PDF(411 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (3) : 559-568. DOI: 10.12386/A2014sxxb0052
论文

Cauchy-三次函数方程及其Hyers-Ulam稳定性

    纪培胜, 魏然红, 刘荣荣
作者信息 +

On a Cauchy-Cubic Functional Equation and Its Hyers-Ulam Stability

    Pei Sheng JI, Ran Hong WEI, Rong Rong LIU
Author information +
文章历史 +

摘要

给出Cauchy-三次函数方程fx1+x2,2y1+y2)+{fx1+x2,2y1-y2)}={2fx1,y1+y2)}+{2fx1,y1-y2)}+{12fx1,y1)}+{2f(x2,y1+y2)}+{2fx2,y1-y2)}+{12fx2,y1)}的一般解,并用直接方法和不动点方法研究它在Banach空间上的Hyers-Ulam稳定性及模糊稳定性.

Abstract

We obtain the general solution and the generalized Hyers-Ulam stability of the Cauchy-cubic functional equation f(x1+x2,2y1+y2)+{f(x1+x2,2y1-y2)}={2f(x1,y1+y2)}+{2f(x1,y1-y2)}+{12f(x1,y1)}+{2f(x2,y1+y2)}+{2f(x2,y1-y2)}+{12f(x2,y1)} in Banach space and fuzzy Banach space using the direct method and the fixed point method, respectively.

关键词

Hyers-Ulam稳定性 / Cauchy-三次函数方程 / 四次函数方程

Key words

Hyers-Ulam stability / Cauchy-cubic functional equation / quartic functional equation

引用本文

导出引用
纪培胜, 魏然红, 刘荣荣. Cauchy-三次函数方程及其Hyers-Ulam稳定性. 数学学报, 2014, 57(3): 559-568 https://doi.org/10.12386/A2014sxxb0052
Pei Sheng JI, Ran Hong WEI, Rong Rong LIU. On a Cauchy-Cubic Functional Equation and Its Hyers-Ulam Stability. Acta Mathematica Sinica, Chinese Series, 2014, 57(3): 559-568 https://doi.org/10.12386/A2014sxxb0052

参考文献

[1] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 1950, 2: 64-66.
[2] Bae J. H., Park W. G., On a bi-quadratic functional equation and its stability, Nonlinear Anal., 2005, 62: 643-654.
[3] Bag T., Samanta S. K., Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 2003, 11: 687-705.
[4] Chu H. Y., Ku S. H., Park J. S., Partial stabilities and partial derivations of n-variable functions, Nonlinear Anal., 2010, 72: 1531-1541.
[5] Chung J. K., Sahoo P. K., On the general solution of a quartic functional equation, Bull Korean Math., 2003, 40(4): 565-576.
[6] Cieplinski K., Generalized stability of multi-additive mappings, App. Math. Lett., 2010, 23: 1291-1294.
[7] Cieplinski K., On the generalized Hyers-Ulam stability of multi-quadratic mappings, Computer Math. Appl., 2011, 62: 3418-3426.
[8] Eskandani G. Z., Gavruta P., Rassias J. M., et al., Generalized Hyers-Ulam stability for a general mixed functional equation in quasi-β-normed spaces, Mediterr J. Math., 2011, 8: 331-348.
[9] Felbin C., Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, 1992, 48: 239-248.
[10] Gavruta P., A generalization of the Hyers-Ulam-Rassias stability of approximated additive mappings, J. Math. Anal. Appl., 1994, 184: 431-436.
[11] Gordji M. E., Zolfaghari S., Rassias J. M., et al., Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abstract and Applied Analysis, 2009, Article ID 417473, 14pages.
[12] Hyers D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 1941, 27: 222-224.
[13] Jun K. W., Kim H. M., The generallized Hyers-Ulam-Rassias stability of cubic functional equation, J. Math. Anal. Appl., 2002, 274: 867-878.
[14] Lee J. R., Jang S. Y., Park Ch., et al., Fuzzy stability of quadratic functional equations, Adv. Difference Equ., 2010, Article ID 412160.
[15] Lee Y. H., Jung S. M., A fixed point approach to the stability of an n-dimensional mixed type additive and quadratic functional equation, Abstract and Applied Analysis, 2012, Article ID 482936, 14page.
[16] Lee Y. S., Chung S. Y., Stability of quartic functional equations in the spaces of generalized functions, Adv. Diff. Equa., 2009, Article ID 838347.
[17] Najati A., Ranjbari A., Stability of homomorphisms for a 3D Cauchy-Jensen type functional equation on C*-ternary algebras, J. Math. Anal. Appl., 2008, 341: 62-79.
[18] Park Ch., Fuzzy Stability of a functional equation associated with inner product Spaces, Fuzzy Sets and Systems, 2009, 160: 1632-1642.
[19] Park Ch., Kim J. H., The stability of a quadratic functional equation with the fixed point alternative, Abstract and Applied Analysis, 2009, Article ID 907167, 11pages.
[20] Popa D., Hyers-Ulam-Rassias syability of a linear recurrence, J. Math. Anal. Appl., 2005, 309: 591-597.
[21] Radu V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 2003, 4(1): 91-96.
[22] Rassias Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72: 297-300.
[23] Rassias J. M., Solution of the Ulam stability problem for quartic mappings, Glasnik Matematick, 1999, 34(2): 234-252.
[24] Ulam S. M., A collection of the Mathematical Problems, Wiley, New York, 1960.
[25] Wang Z. H., Fuzzy stability of quadratic-cubic functional equations, Acta Mathematica Sinica, English Series, 2011, 27(11): 2191-2204.

基金

国家自然科学基金资助项目(10971117)
PDF(411 KB)

284

Accesses

0

Citation

Detail

段落导航
相关文章

/