障碍分红策略下的相关双边跳扩散模型

董迎辉, 徐亚娟

数学学报 ›› 2014, Vol. 57 ›› Issue (3) : 581-592.

PDF(601 KB)
PDF(601 KB)
数学学报 ›› 2014, Vol. 57 ›› Issue (3) : 581-592. DOI: 10.12386/A2014sxxb0054
论文

障碍分红策略下的相关双边跳扩散模型

    董迎辉1, 徐亚娟2,3
作者信息 +

Correlated Two-Sided Jump-Diffusion Model Under the Barrier Dividend

    Ying Hui DONG1, Ya Juan XU2,3
Author information +
文章历史 +

摘要

带干扰的经典风险模型,其干扰项可被解释为未来的总理赔量, 保费收入以及未来投资收益的不确定性. 本文用一个与理赔量过程相关的双指数跳扩散过程来描述这些不确定性,考虑障碍策略下相关双边跳扩散模型的破产问题, 给出破产时间拉普拉斯变换的显式表达公式.

Abstract

In the perturbed classical risk model, the perturbed part is usually interpreted as the fluctuation of the total claim amount, the premium income and the surplus investment return. This paper uses a double exponential jump-diffusion model which depends on the aggregate claim process to describe the fluctuation. We consider the ruin problem under a correlated two-sided jump-diffusion model with a barrier dividend, and give the explicit expression for the Laplace transform of the ruin time.

关键词

相关双边跳扩散模型 / 推广的Lundberg方程 / 破产 / 分红

Key words

correlated two-sided jump-diffusion model / generalized Lundberg equation / ruin / dividend

引用本文

导出引用
董迎辉, 徐亚娟. 障碍分红策略下的相关双边跳扩散模型. 数学学报, 2014, 57(3): 581-592 https://doi.org/10.12386/A2014sxxb0054
Ying Hui DONG, Ya Juan XU. Correlated Two-Sided Jump-Diffusion Model Under the Barrier Dividend. Acta Mathematica Sinica, Chinese Series, 2014, 57(3): 581-592 https://doi.org/10.12386/A2014sxxb0054

参考文献

[1] Bo Y. J., Song R. M., Tang D., et al., Lévy risk model with two-sided jumps and a barrier dividend strategy, Insurance Math. Econom., 2012, 50: 280-291.
[2] Chi Y., Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance, Insurance Math. Econom., 2012, 46(2): 385-396.
[3] De Finetti B., Su un’impostazion alternativa dell teoria collecttiva delrischio, Transactions of the XVth International Congress of Actuaries, 1957, 2: 433-443.
[4] Dufresne F., Gerber H. U., Risk theory for the compound Poisson process that is perturbed by diffusion, Insurance Math. Econom., 1991, 10: 51-59.
[5] Gerber H. U., Shiu E. S. W., On the time value of ruin, N. Amer. Actuarial J., 1998, 2(1): 48-78.
[6] Gerber H. U., Shiu E. S. W., The time value of ruin in a Sparre Andersen model, N. Amer. Actuarial J., 2005, 9(2): 49-84.
[7] Kou S. G., Wang H., First passage times of a jump diffusion process, Adv. Appl. Probab., 2003, 35: 427-445.
[8] Kou S. G., Wang H., Option pricing under a double exponential jump diffusion model, Manag. Sci., 2004, 50: 1178-1192.
[9] Lin X. S., Willmot G. E., The moments of the time of ruin, the surplus before ruin, and the deficit at ruin, Insurance Math. Econom., 2000, 27: 19-44.
[10] Zhang Z. M., Yang H., Li S. M., The perturbed compound Poisson risk model with two-sided jumps, J. Comput. Appl. Math., 2010, 233: 1773-1784.

基金

国家自然科学基金(11301369);江苏省自然科学基金(BK20130260);中国博士后基金(2013M540371)
PDF(601 KB)

227

Accesses

0

Citation

Detail

段落导航
相关文章

/